TensorFlow2.X结合OpenCV 实现手势识别功能


Posted in Python onApril 08, 2020

使用Tensorflow 构建卷积神经网络,训练手势识别模型,使用opencv DNN 模块加载模型实时手势识别
效果如下:

TensorFlow2.X结合OpenCV 实现手势识别功能

先显示下部分数据集图片(0到9的表示,感觉很怪)

TensorFlow2.X结合OpenCV 实现手势识别功能

构建模型进行训练

import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import datasets,layers,optimizers,Sequential,metrics
from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2
import os 
import pathlib
import random
import matplotlib.pyplot as plt
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
def read_data(path):
 path_root = pathlib.Path(path)
 # print(path_root)
 # for item in path_root.iterdir():
 #  print(item)
 image_paths = list(path_root.glob('*/*'))
 image_paths = [str(path) for path in image_paths]
 random.shuffle(image_paths)
 image_count = len(image_paths)
 # print(image_count)
 # print(image_paths[:10])
 label_names = sorted(item.name for item in path_root.glob('*/') if item.is_dir())
 # print(label_names)
 label_name_index = dict((name, index) for index, name in enumerate(label_names))
 # print(label_name_index)
 image_labels = [label_name_index[pathlib.Path(path).parent.name] for path in image_paths]
 # print("First 10 labels indices: ", image_labels[:10])
 return image_paths,image_labels,image_count
def preprocess_image(image):
 image = tf.image.decode_jpeg(image, channels=3)
 image = tf.image.resize(image, [100, 100])
 image /= 255.0 # normalize to [0,1] range
 # image = tf.reshape(image,[100*100*3])
 return image
def load_and_preprocess_image(path,label):
 image = tf.io.read_file(path)
 return preprocess_image(image),label
def creat_dataset(image_paths,image_labels,bitch_size):
 db = tf.data.Dataset.from_tensor_slices((image_paths, image_labels))
 dataset = db.map(load_and_preprocess_image).batch(bitch_size) 
 return dataset
def train_model(train_data,test_data):
 #构建模型
 network = keras.Sequential([
   keras.layers.Conv2D(32,kernel_size=[5,5],padding="same",activation=tf.nn.relu),
   keras.layers.MaxPool2D(pool_size=[2, 2], strides=2, padding='same'),
   keras.layers.Conv2D(64,kernel_size=[3,3],padding="same",activation=tf.nn.relu),
   keras.layers.MaxPool2D(pool_size=[2, 2], strides=2, padding='same'),
   keras.layers.Conv2D(64,kernel_size=[3,3],padding="same",activation=tf.nn.relu),
   keras.layers.Flatten(),
   keras.layers.Dense(512,activation='relu'),
   keras.layers.Dropout(0.5),
   keras.layers.Dense(128,activation='relu'),
   keras.layers.Dense(10)])
 network.build(input_shape=(None,100,100,3))
 network.summary()
 network.compile(optimizer=optimizers.SGD(lr=0.001),
   loss=tf.losses.SparseCategoricalCrossentropy(from_logits=True),
   metrics=['accuracy']
 )
 #模型训练
 network.fit(train_data, epochs = 100,validation_data=test_data,validation_freq=2) 
 network.evaluate(test_data)
 tf.saved_model.save(network,'D:\\code\\PYTHON\\gesture_recognition\\model\\')
 print("保存模型成功")
 # Convert Keras model to ConcreteFunction
 full_model = tf.function(lambda x: network(x))
 full_model = full_model.get_concrete_function(
 tf.TensorSpec(network.inputs[0].shape, network.inputs[0].dtype))
 # Get frozen ConcreteFunction
 frozen_func = convert_variables_to_constants_v2(full_model)
 frozen_func.graph.as_graph_def()

 layers = [op.name for op in frozen_func.graph.get_operations()]
 print("-" * 50)
 print("Frozen model layers: ")
 for layer in layers:
  print(layer)

 print("-" * 50)
 print("Frozen model inputs: ")
 print(frozen_func.inputs)
 print("Frozen model outputs: ")
 print(frozen_func.outputs)

 # Save frozen graph from frozen ConcreteFunction to hard drive
 tf.io.write_graph(graph_or_graph_def=frozen_func.graph,
   logdir="D:\\code\\PYTHON\\gesture_recognition\\model\\frozen_model\\",
   name="frozen_graph.pb",
   as_text=False)
 print("模型转换完成,训练结束")


if __name__ == "__main__":
 print(tf.__version__)
 train_path = 'D:\\code\\PYTHON\\gesture_recognition\\Dataset'
 test_path = 'D:\\code\\PYTHON\\gesture_recognition\\testdata' 
 image_paths,image_labels,_ = read_data(train_path)
 train_data = creat_dataset(image_paths,image_labels,16)
 image_paths,image_labels,_ = read_data(test_path)
 test_data = creat_dataset(image_paths,image_labels,16)
 train_model(train_data,test_data)

OpenCV加载模型,实时检测

这里为了简化检测使用了ROI。

import cv2
from cv2 import dnn
import numpy as np
print(cv2.__version__)
class_name = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']
net = dnn.readNetFromTensorflow('D:\\code\\PYTHON\\gesture_recognition\\model\\frozen_model\\frozen_graph.pb')
cap = cv2.VideoCapture(0)
i = 0
while True:
 _,frame= cap.read() 
 src_image = frame
 cv2.rectangle(src_image, (300, 100),(600, 400), (0, 255, 0), 1, 4)
 frame = cv2.cvtColor(frame,cv2.COLOR_BGR2RGB)
 pic = frame[100:400,300:600]
 cv2.imshow("pic1", pic)
 # print(pic.shape)
 pic = cv2.resize(pic,(100,100))
 blob = cv2.dnn.blobFromImage(pic,  
        scalefactor=1.0/225.,
        size=(100, 100),
        mean=(0, 0, 0),
        swapRB=False,
        crop=False)
 # blob = np.transpose(blob, (0,2,3,1))       
 net.setInput(blob)
 out = net.forward()
 out = out.flatten()

 classId = np.argmax(out)
 # print("classId",classId)
 print("预测结果为:",class_name[classId])
 src_image = cv2.putText(src_image,str(classId),(300,100), cv2.FONT_HERSHEY_SIMPLEX, 2,(0,0,255),2,4)
 # cv.putText(img, text, org, fontFace, fontScale, fontcolor, thickness, lineType)
 cv2.imshow("pic",src_image)
 if cv2.waitKey(10) == ord('0'):
  break

小结

这里本质上还是一个图像分类任务。而且,样本数量较少。优化的时候需要做数据增强,还需要防止过拟合。

到此这篇关于TensorFlow2.X结合OpenCV 实现手势识别功能的文章就介绍到这了,更多相关TensorFlow OpenCV 手势识别内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
在Python中利用Pandas库处理大数据的简单介绍
Apr 07 Python
Python中join和split用法实例
Apr 14 Python
Python 'takes exactly 1 argument (2 given)' Python error
Dec 13 Python
Python实现拷贝/删除文件夹的方法详解
Aug 29 Python
Python常见读写文件操作实例总结【文本、json、csv、pdf等】
Apr 15 Python
pandas-resample按时间聚合实例
Dec 27 Python
Python基础之变量基本用法与进阶详解
Jan 03 Python
Pycharm2020最新激活码|永久激活(附最新激活码和插件的详细教程)
Sep 29 Python
pycharm使用技巧之自动调整代码格式总结
Nov 04 Python
PyCharm常用配置和常用插件(小结)
Feb 06 Python
pytorch 如何使用batch训练lstm网络
May 28 Python
详解非极大值抑制算法之Python实现
Jun 28 Python
python 安装库几种方法之cmd,anaconda,pycharm详解
Apr 08 #Python
TensorFlow2.1.0最新版本安装详细教程
Apr 08 #Python
解决python多线程报错:AttributeError: Can't pickle local object问题
Apr 08 #Python
解决Python 异常TypeError: cannot concatenate 'str' and 'int' objects
Apr 08 #Python
TensorFlow2.1.0安装过程中setuptools、wrapt等相关错误指南
Apr 08 #Python
解决windows下python3使用multiprocessing.Pool出现的问题
Apr 08 #Python
python操作yaml说明
Apr 08 #Python
You might like
地摊中国 - 珍藏老照片
2020/08/18 杂记
用函数读出数据表内容放入二维数组
2006/10/09 PHP
dedecms 制作模板中使用的全局标记图文教程
2007/03/11 PHP
php中echo()和print()、require()和include()等易混淆函数的区别
2012/02/22 PHP
PHPExcel导出2003和2007的excel文档功能示例
2017/01/04 PHP
PHP实现的多维数组去重操作示例
2018/07/21 PHP
一个js实现的所谓的滑动门
2007/05/23 Javascript
jquery 图片轮换效果
2010/07/29 Javascript
iframe自适应宽度、高度 ie6 7 8,firefox 3.86下测试通过
2010/07/29 Javascript
正则表达式搭配js轻松处理json文本方便而老古
2013/02/17 Javascript
js 点击页面其他地方关闭弹出层(示例代码)
2013/12/24 Javascript
JQuery.get提交页面不跳转的解决方法
2015/01/13 Javascript
JQuery中DOM加载与事件执行实例分析
2015/06/13 Javascript
极易被忽视的javascript面试题七问七答
2016/02/15 Javascript
详解Matlab中 sort 函数用法
2016/03/20 Javascript
JS判断输入的字符串是否是数字的方法(正则表达式)
2016/11/29 Javascript
浅谈pc端rem字体设置的问题
2017/08/03 Javascript
实现div滚动条默认最底部以及默认最右边的示例代码
2017/11/15 Javascript
JS中实现隐藏部分姓名或者电话号码的代码
2018/07/17 Javascript
Vue CLI3 如何支持less的方法示例
2018/08/29 Javascript
vue实现简单的日历效果
2020/09/24 Javascript
Node.js使用MongoDB的ObjectId作为查询条件的方法
2019/09/10 Javascript
[27:39]Ti4 循环赛第二日 LGD vs Fnatic
2014/07/11 DOTA
解决Ubuntu pip 安装 mysql-python包出错的问题
2018/06/11 Python
详解从Django Rest Framework响应中删除空字段
2019/01/11 Python
Python学习笔记之自定义函数用法详解
2019/06/08 Python
网易2016研发工程师编程题 奖学金(python)
2019/06/19 Python
Django 响应数据response的返回源码详解
2019/08/06 Python
Python 文件操作之读取文件(read),文件指针与写入文件(write),文件打开方式示例
2019/09/29 Python
详解opencv中画圆circle函数和椭圆ellipse函数
2019/12/27 Python
Python 实现数组相减示例
2019/12/27 Python
基于HTML5的WebSocket的实例代码
2018/08/15 HTML / CSS
Canvas获取视频第一帧缩略图的实现
2020/11/11 HTML / CSS
销售经理工作职责范文
2013/12/03 职场文书
钳工实训报告总结
2014/11/04 职场文书
2015迎新晚会活动总结
2015/07/16 职场文书