Pytorch对Himmelblau函数的优化详解


Posted in Python onFebruary 29, 2020

Himmelblau函数如下:

Pytorch对Himmelblau函数的优化详解

有四个全局最小解,且值都为0,这个函数常用来检验优化算法的表现如何:

Pytorch对Himmelblau函数的优化详解

可视化函数图像:

import numpy as np
from matplotlib import pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
 
def himmelblau(x):
 return (x[0] ** 2 + x[1] - 11) ** 2 + (x[0] + x[1] ** 2 - 7) ** 2
 
x = np.arange(-6, 6, 0.1)
y = np.arange(-6, 6, 0.1)
X, Y = np.meshgrid(x, y)
Z = himmelblau([X, Y])
fig = plt.figure("himmeblau")
ax = fig.gca(projection='3d')
ax.plot_surface(X, Y, Z)
ax.view_init(60, -30)
ax.set_xlabel('x')
ax.set_ylabel('y')
plt.show()

结果:

Pytorch对Himmelblau函数的优化详解

使用随机梯度下降优化:

import torch
 
 def himmelblau(x):
 return (x[0] ** 2 + x[1] - 11) ** 2 + (x[0] + x[1] ** 2 - 7) ** 2
 
# 初始设置为0,0.
x = torch.tensor([0., 0.], requires_grad=True)
# 优化目标是找到使himmelblau函数值最小的坐标x[0],x[1],
# 也就是x, y
# 这里是定义Adam优化器,指明优化目标是x,学习率是1e-3
optimizer = torch.optim.Adam([x], lr=1e-3)
 
for step in range(20000):
 # 每次计算出当前的函数值
 pred = himmelblau(x)
 # 当网络参量进行反馈时,梯度是被积累的而不是被替换掉,这里即每次将梯度设置为0
 optimizer.zero_grad()
 # 生成当前所在点函数值相关的梯度信息,这里即优化目标的梯度信息
 pred.backward()
 # 使用梯度信息更新优化目标的值,即更新x[0]和x[1]
 optimizer.step()
 # 每2000次输出一下当前情况
 if step % 2000 == 0:
 print("step={},x={},f(x)={}".format(step, x.tolist(), pred.item()))

输出结果:

step=0,x=[0.0009999999310821295, 0.0009999999310821295],f(x)=170.0
step=2000,x=[2.3331806659698486, 1.9540692567825317],f(x)=13.730920791625977
step=4000,x=[2.9820079803466797, 2.0270984172821045],f(x)=0.014858869835734367
step=6000,x=[2.999983549118042, 2.0000221729278564],f(x)=1.1074007488787174e-08
step=8000,x=[2.9999938011169434, 2.0000083446502686],f(x)=1.5572823031106964e-09
step=10000,x=[2.999997854232788, 2.000002861022949],f(x)=1.8189894035458565e-10
step=12000,x=[2.9999992847442627, 2.0000009536743164],f(x)=1.6370904631912708e-11
step=14000,x=[2.999999761581421, 2.000000238418579],f(x)=1.8189894035458565e-12
step=16000,x=[3.0, 2.0],f(x)=0.0
step=18000,x=[3.0, 2.0],f(x)=0.0

从上面结果看,找到了一组最优解[3.0, 2.0],此时极小值为0.0。如果修改Tensor变量x的初始化值,可能会找到其它的极小值,也就是说初始化值对于找到最优解很关键。

补充拓展:pytorch 搭建自己的神经网络和各种优化器

还是直接看代码吧!

import torch
import torchvision
import torchvision.transforms as transform
import torch.utils.data as Data
import matplotlib.pyplot as plt
from torch.utils.data import Dataset,DataLoader
import pandas as pd
import numpy as np
from torch.autograd import Variable
 
# data set
train=pd.read_csv('Thirdtest.csv')
#cut 0 col as label
train_label=train.iloc[:,[0]] #只读取一列
#train_label=train.iloc[:,0:3]
#cut 1~16 col as data
train_data=train.iloc[:,1:]
#change to np
train_label_np=train_label.values
train_data_np=train_data.values
 
#change to tensor
train_label_ts=torch.from_numpy(train_label_np)
train_data_ts=torch.from_numpy(train_data_np)
 
train_label_ts=train_label_ts.type(torch.LongTensor)
train_data_ts=train_data_ts.type(torch.FloatTensor)
 
 
 
print(train_label_ts.shape)
print(type(train_label_ts))
 
train_dataset=Data.TensorDataset(train_data_ts,train_label_ts)
train_loader=DataLoader(dataset=train_dataset,batch_size=64,shuffle=True)
 
#make a network
 
import torch.nn.functional as F   # 激励函数都在这
 
class Net(torch.nn.Module):   # 继承 torch 的 Module
  def __init__(self ):
    super(Net, self).__init__()   # 继承 __init__ 功能
    self.hidden1 = torch.nn.Linear(16, 30)# 隐藏层线性输出
    self.out = torch.nn.Linear(30, 3)    # 输出层线性输出
 
  def forward(self, x):
    # 正向传播输入值, 神经网络分析出输出值
    x = F.relu(self.hidden1(x))   # 激励函数(隐藏层的线性值)
    x = self.out(x)         # 输出值, 但是这个不是预测值, 预测值还需要再另外计算
    return x
 
 
# net=Net()
# optimizer = torch.optim.SGD(net.parameters(), lr=0.0001,momentum=0.001)
# loss_func = torch.nn.CrossEntropyLoss() # the target label is NOT an one-hotted
 
# loss_list=[]
# for epoch in range(500):
#   for step ,(b_x,b_y) in enumerate (train_loader):
#     b_x,b_y=Variable(b_x),Variable(b_y)
#     b_y=b_y.squeeze(1)
#     output=net(b_x)
#     loss=loss_func(output,b_y)
#     optimizer.zero_grad()
#     loss.backward()
#     optimizer.step()
#     if epoch%1==0:
#       loss_list.append(float(loss))
#     print( "Epoch: ", epoch, "Step ", step, "loss: ", float(loss))
 
 
# 为每个优化器创建一个 net
net_SGD     = Net()
net_Momentum  = Net()
net_RMSprop   = Net()
net_Adam    = Net()
nets = [net_SGD, net_Momentum, net_RMSprop, net_Adam]
 
#定义优化器
LR=0.0001
opt_SGD     = torch.optim.SGD(net_SGD.parameters(), lr=LR,momentum=0.001)
opt_Momentum  = torch.optim.SGD(net_Momentum.parameters(), lr=LR, momentum=0.8)
opt_RMSprop   = torch.optim.RMSprop(net_RMSprop.parameters(), lr=LR, alpha=0.9)
opt_Adam    = torch.optim.Adam(net_Adam.parameters(), lr=LR, betas=(0.9, 0.99))
optimizers = [opt_SGD, opt_Momentum, opt_RMSprop, opt_Adam]
 
loss_func = torch.nn.CrossEntropyLoss()
losses_his = [[], [], [], []]
 
for net, opt, l_his in zip(nets, optimizers, losses_his):
  for epoch in range(500):
    for step, (b_x, b_y) in enumerate(train_loader):
      b_x, b_y = Variable(b_x), Variable(b_y)
      b_y = b_y.squeeze(1)# 数据必须得是一维非one-hot向量
    # 对每个优化器, 优化属于他的神经网络
 
      output = net(b_x)       # get output for every net
      loss = loss_func(output, b_y) # compute loss for every net
      opt.zero_grad()        # clear gradients for next train
      loss.backward()        # backpropagation, compute gradients
      opt.step()           # apply gradients
      if epoch%1==0:
        l_his.append(loss.data.numpy())   # loss recoder
        print("optimizers: ",opt,"Epoch: ",epoch,"Step ",step,"loss: ",float(loss))
 
labels = ['SGD', 'Momentum', 'RMSprop', 'Adam']
for i, l_his in enumerate(losses_his):
  plt.plot(l_his, label=labels[i])
plt.legend(loc='best')
plt.xlabel('Steps')
plt.ylabel('Loss')
plt.xlim((0,1000))
plt.ylim((0,4))
plt.show()
 

 
#
# for epoch in range(5):
#   for step ,(b_x,b_y) in enumerate (train_loader):
#     b_x,b_y=Variable(b_x),Variable(b_y)
#     b_y=b_y.squeeze(1)
#     output=net(b_x)
#     loss=loss_func(output,b_y)
#     loss.backward()
#     optimizer.zero_grad()
#     optimizer.step()
#     print(loss)

以上这篇Pytorch对Himmelblau函数的优化详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python dict remove数组删除(del,pop)
Mar 24 Python
跟老齐学Python之有容乃大的list(3)
Sep 15 Python
Python实现图片尺寸缩放脚本
Mar 10 Python
用 Python 连接 MySQL 的几种方式详解
Apr 04 Python
Python简单获取网卡名称及其IP地址的方法【基于psutil模块】
May 24 Python
Python数据分析matplotlib设置多个子图的间距方法
Aug 03 Python
Python Cookie 读取和保存方法
Dec 28 Python
Python弹出输入框并获取输入值的实例
Jun 18 Python
python增加图像对比度的方法
Jul 12 Python
python获取百度热榜链接的实例方法
Aug 25 Python
python3.9实现pyinstaller打包python文件成exe
Dec 13 Python
Python机器学习之底层实现KNN
Jun 20 Python
Pytorch中的自动求梯度机制和Variable类实例
Feb 29 #Python
在pytorch中实现只让指定变量向后传播梯度
Feb 29 #Python
浅谈Pytorch中的自动求导函数backward()所需参数的含义
Feb 29 #Python
python数据预处理 :样本分布不均的解决(过采样和欠采样)
Feb 29 #Python
python实现门限回归方式
Feb 29 #Python
Python3.9又更新了:dict内置新功能
Feb 28 #Python
python实现logistic分类算法代码
Feb 28 #Python
You might like
Windows下的PHP5.0详解
2006/11/18 PHP
PHP在线生成二维码代码(google api)
2013/06/03 PHP
C/S和B/S两种架构区别与优缺点分析
2014/10/23 PHP
php实现的任意进制互转类分享
2015/07/07 PHP
PHP抽象类与接口的区别实例详解
2019/05/09 PHP
用jquery和json从后台获得数据集的代码
2011/11/07 Javascript
jQuery中[attribute^=value]选择器用法实例
2014/12/31 Javascript
浅析js中substring和substr的方法
2015/11/09 Javascript
JavaScript对Json的增删改属性详解
2016/06/02 Javascript
js智能获取浏览器版本UA信息的方法
2016/08/08 Javascript
jquery动态创建div与input的实例代码
2016/10/12 Javascript
详解Nodejs的timers模块
2016/12/22 NodeJs
jQuery实现加入收藏夹功能(主流浏览器兼职)
2016/12/24 Javascript
Move.js入门
2017/02/08 Javascript
基于nodejs 的多页面爬虫实例代码
2017/05/31 NodeJs
JavaScript树的深度优先遍历和广度优先遍历算法示例
2018/07/30 Javascript
vue中的适配px2rem示例代码
2018/11/19 Javascript
详解小程序input框失焦事件在提交事件前的处理
2019/05/05 Javascript
pandas实现选取特定索引的行
2018/04/20 Python
Python实现自定义顺序、排列写入数据到Excel的方法
2018/04/23 Python
Python爬取数据并写入MySQL数据库的实例
2018/06/21 Python
python实现名片管理系统
2018/11/29 Python
Python K最近邻从原理到实现的方法
2019/08/15 Python
python 通过视频url获取视频的宽高方式
2019/12/10 Python
Python文字截图识别OCR工具实例解析
2020/03/05 Python
终于搞懂了Keras中multiloss的对应关系介绍
2020/06/22 Python
利用PyTorch实现VGG16教程
2020/06/24 Python
澳大利亚第一的设计师礼服租赁网站:GlamCorner
2017/08/13 全球购物
车间操作工岗位职责
2013/12/19 职场文书
竞聘书模板
2014/03/31 职场文书
小城镇建设汇报材料
2014/08/16 职场文书
2014年医院后勤工作总结
2014/12/06 职场文书
博士论文答辩开场白
2015/06/01 职场文书
运动会班级口号霸气押韵
2015/12/24 职场文书
[有人@你]你有一封绿色倡议书,请查收!
2019/07/18 职场文书
JavaScript事件的委托(代理)的用法示例详解
2022/02/18 Javascript