python sort、sorted高级排序技巧


Posted in Python onNovember 21, 2014

Python list内置sort()方法用来排序,也可以用python内置的全局sorted()方法来对可迭代的序列排序生成新的序列。

1)排序基础

简单的升序排序是非常容易的。只需要调用sorted()方法。它返回一个新的list,新的list的元素基于小于运算符(__lt__)来排序。

>>> sorted([5, 2, 3, 1, 4])

[1, 2, 3, 4, 5]

 
你也可以使用list.sort()方法来排序,此时list本身将被修改。通常此方法不如sorted()方便,但是如果你不需要保留原来的list,此方法将更有效。
>>> a = [5, 2, 3, 1, 4]

>>> a.sort()

>>> a

[1, 2, 3, 4, 5]

另一个不同就是list.sort()方法仅被定义在list中,相反地sorted()方法对所有的可迭代序列都有效。
>>> 

sorted({1: 'D', 2: 'B', 3: 'B', 4: 'E', 5: 'A'})

[1, 2, 3, 4, 5]

2)key参数/函数

从python2.4开始,list.sort()和sorted()函数增加了key参数来指定一个函数,此函数将在每个元素比较前被调用。 例如通过key指定的函数来忽略字符串的大小写:

>>> sorted("This is a test string from Andrew".split(), key=str.lower)

['a', 'Andrew', 'from', 'is', 'string', 'test', 'This']

key参数的值为一个函数,此函数只有一个参数且返回一个值用来进行比较。这个技术是快速的因为key指定的函数将准确地对每个元素调用。

更广泛的使用情况是用复杂对象的某些值来对复杂对象的序列排序,例如:

>>> student_tuples = [

        ('john', 'A', 15),

        ('jane', 'B', 12),

        ('dave', 'B', 10),

]

>>> sorted(student_tuples, key=lambda student: student[2])   # sort by age

[('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]

同样的技术对拥有命名属性的复杂对象也适用,例如:

>>> class Student:

        def __init__(self, name, grade, age):

                self.name = name

                self.grade = grade

                self.age = age

        def __repr__(self):

                return repr((self.name, self.grade, self.age))

>>> student_objects = [

        Student('john', 'A', 15),

        Student('jane', 'B', 12),

        Student('dave', 'B', 10),

]

>>> sorted(student_objects, key=lambda student: student.age)   # sort by age

[('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]

3)Operator 模块函数

上面的key参数的使用非常广泛,因此python提供了一些方便的函数来使得访问方法更加容易和快速。operator模块有itemgetter,attrgetter,从2.6开始还增加了methodcaller方法。使用这些方法,上面的操作将变得更加简洁和快速:

>>> from operator import itemgetter, attrgetter

>>> sorted(student_tuples, key=itemgetter(2))

[('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]

>>> sorted(student_objects, key=attrgetter('age'))

[('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]

operator模块还允许多级的排序,例如,先以grade,然后再以age来排序:
>>> sorted(student_tuples, key=itemgetter(1,2))

[('john', 'A', 15), ('dave', 'B', 10), ('jane', 'B', 12)]

>>> sorted(student_objects, key=attrgetter('grade', 'age'))

[('john', 'A', 15), ('dave', 'B', 10), ('jane', 'B', 12)]

4)升序和降序

list.sort()和sorted()都接受一个参数reverse(True or False)来表示升序或降序排序。例如对上面的student降序排序如下:

>>> sorted(student_tuples, key=itemgetter(2), reverse=True)

[('john', 'A', 15), ('jane', 'B', 12), ('dave', 'B', 10)]

>>> sorted(student_objects, key=attrgetter('age'), reverse=True)

[('john', 'A', 15), ('jane', 'B', 12), ('dave', 'B', 10)]

5)排序的稳定性和复杂排序

从python2.2开始,排序被保证为稳定的。意思是说多个元素如果有相同的key,则排序前后他们的先后顺序不变。

>>> data = [('red', 1), ('blue', 1), ('red', 2), ('blue', 2)]

>>> sorted(data, key=itemgetter(0))

[('blue', 1), ('blue', 2), ('red', 1), ('red', 2)]

注意在排序后'blue'的顺序被保持了,即'blue', 1在'blue', 2的前面。
 
更复杂地你可以构建多个步骤来进行更复杂的排序,例如对student数据先以grade降序排列,然后再以age升序排列。
>>> s = sorted(student_objects, key=attrgetter('age'))     # sort on secondary key

>>> sorted(s, key=attrgetter('grade'), reverse=True)       # now sort on primary key, descending

[('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]

6)最老土的排序方法-DSU

我们称其为DSU(Decorate-Sort-Undecorate),原因为排序的过程需要下列三步:
第一:对原始的list进行装饰,使得新list的值可以用来控制排序;
第二:对装饰后的list排序;
第三:将装饰删除,将排序后的装饰list重新构建为原来类型的list;
 

例如,使用DSU方法来对student数据根据grade排序:
>>> decorated = [(student.grade, i, student) for i, student in enumerate(student_objects)]
>>> decorated.sort()
>>> [student for grade, i, student in decorated]               # undecorate
[('john', 'A', 15), ('jane', 'B', 12), ('dave', 'B', 10)]
上面的比较能够工作,原因是tuples是可以用来比较,tuples间的比较首先比较tuples的第一个元素,如果第一个相同再比较第二个元素,以此类推。
 

并不是所有的情况下都需要在以上的tuples中包含索引,但是包含索引可以有以下好处:
第一:排序是稳定的,如果两个元素有相同的key,则他们的原始先后顺序保持不变;
第二:原始的元素不必用来做比较,因为tuples的第一和第二元素用来比较已经是足够了。
 

此方法被RandalL.在perl中广泛推广后,他的另一个名字为也被称为Schwartzian transform。
 

对大的list或list的元素计算起来太过复杂的情况下,在python2.4前,DSU很可能是最快的排序方法。但是在2.4之后,上面解释的key函数提供了类似的功能。
 

7)其他语言普遍使用的排序方法-cmp函数

在python2.4前,sorted()和list.sort()函数没有提供key参数,但是提供了cmp参数来让用户指定比较函数。此方法在其他语言中也普遍存在。

在python3.0中,cmp参数被彻底的移除了,从而简化和统一语言,减少了高级比较和__cmp__方法的冲突。

在python2.x中cmp参数指定的函数用来进行元素间的比较。此函数需要2个参数,然后返回负数表示小于,0表示等于,正数表示大于。例如:

>>> def numeric_compare(x, y):

        return x - y

>>> sorted([5, 2, 4, 1, 3], cmp=numeric_compare)

[1, 2, 3, 4, 5]

或者你可以反序排序:
>>> def reverse_numeric(x, y):

        return y - x

>>> sorted([5, 2, 4, 1, 3], cmp=reverse_numeric)

[5, 4, 3, 2, 1]

当我们将现有的2.x的代码移植到3.x时,需要将cmp函数转化为key函数,以下的wrapper很有帮助:
def cmp_to_key(mycmp):

    'Convert a cmp= function into a key= function'

    class K(object):

        def __init__(self, obj, *args):

            self.obj = obj

        def __lt__(self, other):

            return mycmp(self.obj, other.obj) < 0

        def __gt__(self, other):

            return mycmp(self.obj, other.obj) > 0

        def __eq__(self, other):

            return mycmp(self.obj, other.obj) == 0

        def __le__(self, other):

            return mycmp(self.obj, other.obj) <= 0

        def __ge__(self, other):

            return mycmp(self.obj, other.obj) >= 0

        def __ne__(self, other):

            return mycmp(self.obj, other.obj) != 0

    return K

当需要将cmp转化为key时,只需要:

>>> sorted([5, 2, 4, 1, 3], key=cmp_to_key(reverse_numeric))

[5, 4, 3, 2, 1]

从python2.7,cmp_to_key()函数被增加到了functools模块中。

8)其他注意事项

* 对需要进行区域相关的排序时,可以使用locale.strxfrm()作为key函数,或者使用local.strcoll()作为cmp函数。

* reverse参数任然保持了排序的稳定性,有趣的时,同样的效果可以使用reversed()函数两次来实现:

>>> data = [('red', 1), ('blue', 1), ('red', 2), ('blue', 2)]

>>> assert sorted(data, reverse=True) == list(reversed(sorted(reversed(data))))

* 其实排序在内部是调用元素的__cmp__来进行的,所以我们可以为元素类型增加__cmp__方法使得元素可比较,例如:

>>> Student.__lt__ = lambda self, other: self.age < other.age

>>> sorted(student_objects)

[('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]

* key函数不仅可以访问需要排序元素的内部数据,还可以访问外部的资源,例如,如果学生的成绩是存储在dictionary中的,则可以使用此dictionary来对学生名字的list排序,如下:
>>> students = ['dave', 'john', 'jane']

>>> newgrades = {'john': 'F', 'jane':'A', 'dave': 'C'}

>>> sorted(students, key=newgrades.__getitem__)

['jane', 'dave', 'john']

*当你需要在处理数据的同时进行排序的话,sort(),sorted()或bisect.insort()不是最好的方法。在这种情况下,可以使用heap,red-black tree或treap。

Python 相关文章推荐
Python自动连接ssh的方法
Mar 07 Python
Python解析nginx日志文件
May 11 Python
Python列表和元组的定义与使用操作示例
Jul 26 Python
Python返回数组/List长度的实例
Jun 23 Python
Python之list对应元素求和的方法
Jun 28 Python
Flask框架学习笔记之使用Flask实现表单开发详解
Aug 12 Python
基于TensorFlow常量、序列以及随机值生成实例
Jan 04 Python
python 使用递归实现打印一个数字的每一位示例
Feb 27 Python
TensorFlow固化模型的实现操作
May 26 Python
Node.js 和 Python之间该选择哪个?
Aug 05 Python
一篇文章教你用python画动态爱心表白
Nov 22 Python
运行python提示no module named sklearn的解决方法
Nov 29 Python
python中global与nonlocal比较
Nov 21 #Python
python装饰器decorator介绍
Nov 21 #Python
python多线程操作实例
Nov 21 #Python
Python中的闭包详细介绍和实例
Nov 21 #Python
Python多线程同步Lock、RLock、Semaphore、Event实例
Nov 21 #Python
python多进程操作实例
Nov 21 #Python
Python多进程通信Queue、Pipe、Value、Array实例
Nov 21 #Python
You might like
解析php中array_merge与array+array的区别
2013/06/21 PHP
php生成html文件方法总结
2014/12/01 PHP
php遍历删除整个目录及文件的方法
2015/03/13 PHP
JavaScript版代码高亮
2006/06/26 Javascript
Iframe 自动适应页面的高度示例代码
2014/02/26 Javascript
倾力总结40条常见的移动端Web页面问题解决方案
2016/05/24 Javascript
JQuery的attr 与 val区别
2016/06/12 Javascript
浅谈js对象属性 通过点(.) 和方括号([]) 的不同之处
2016/10/29 Javascript
JS实现探测网站链接的方法【测试可用】
2016/11/08 Javascript
Vue中引入样式文件的方法
2017/08/18 Javascript
常用的9个JavaScript图表库详解
2017/12/19 Javascript
JavaScript中 ES6变量的结构赋值
2018/07/10 Javascript
layui数据表格跨行自动合并的例子
2019/09/02 Javascript
JavaScript前端实现压缩图片功能
2020/03/06 Javascript
[10:18]2018DOTA2国际邀请赛寻真——找回自信的TNCPredator
2018/08/13 DOTA
Python translator使用实例
2008/09/06 Python
python获取标准北京时间的方法
2015/03/24 Python
python登录并爬取淘宝信息代码示例
2017/12/09 Python
Python实现识别手写数字 简易图片存储管理系统
2018/01/29 Python
python 不以科学计数法输出的方法
2018/07/16 Python
python制作填词游戏步骤详解
2019/05/05 Python
python机器学习实现决策树
2019/11/11 Python
python3实现往mysql中插入datetime类型的数据
2020/03/02 Python
使用OpenCV实现道路车辆计数的使用方法
2020/07/15 Python
Python+Kepler.gl实现时间轮播地图过程解析
2020/07/20 Python
Python实现列表索引批量删除的5种方法
2020/11/16 Python
关于前端上传文件全面基础扫盲贴(入门)
2019/08/01 HTML / CSS
详解HTML5中的Communication API基本使用方法
2016/01/29 HTML / CSS
CheapTickets泰国:廉价航班,查看促销价格并预订机票
2019/12/28 全球购物
求职简历自我评价范例
2014/03/12 职场文书
社区学习雷锋活动总结
2014/04/25 职场文书
《灰椋鸟》教学反思
2014/04/27 职场文书
乒乓球比赛通知
2015/04/27 职场文书
晚会开场白和结束语
2015/05/29 职场文书
高中数学课堂教学反思
2016/02/18 职场文书
2019年特色火锅店的创业计划书模板
2019/08/28 职场文书