pytorch中的自定义数据处理详解


Posted in Python onJanuary 06, 2020

pytorch在数据中采用Dataset的数据保存方式,需要继承data.Dataset类,如果需要自己处理数据的话,需要实现两个基本方法。

:.getitem:返回一条数据或者一个样本,obj[index] = obj.getitem(index). :.len:返回样本的数量 。 len(obj) = obj.len()。

Dataset 在data里,调用的时候使用

from torch.utils import data
import os
from PIL import Image

数据在调用getitem的时候才会读取图片数据,如果需要可以修改成自己的getitem函数,根据自己的数据集来设定,比如

def _getitem_(self,index):
   img_path=self.imgs[index]; ##这里理解是加载了所有图像的路径,封装成自身的格式
   labels=[] ##根据自己的格式进行处理
   pil_img=Image.open(img_path); ##根据上面封装好的格式进行读取
   array=np.array(pil_img); ##将读取的图像转成array数据表示的格式
   data=t.from_numpy(array) #转成Tensor格式,方便后面网络操作
   return data,label;

def _len_(self):
   return len(self.imgs); ###imgs是一个绝对路径

在主函数里调用的时候,只需使用

dataset=Dataset('') ##或者调用自定义的数据处理类
data,label=dataset[0]; ##相当于调用了dataset.__getitem__(0)
for img,label in dataset:  ##里面也是以字典形式存放
  print(img.size(),imf.float().mean(),label);

采用Dataset的缺点在于实际中图像的大小不一,对数据处理中很不友好,其次数据太大,容易造成溢出,需要进行归一化,因此torchvision提供了transforms模块对Image进行和Tensor进行操作。

对PIL_Image的常见操作:

Scale,调整图像尺寸。centerCrop:randomcrop:randomsizecrop:裁剪图片

pad:填充

ToTensor:将Image图像转化成tensor,并自动归一化到[0,1]

对Tensor的常见操作:

Normalize:标准化,减去均值,除以标准差。 ToPILImage:将Tensor转变成PILImage格式,可以方便后续的可视化。

—————————我是分割线—————————

上面介绍了需要自定义的数据处理方法,pytorch早封装好了比较常用方便的方法.

transforms中的ImageFolder, 该类的好处是,所有文件按照类别进行保存,文件名就是类别名,不需要另外再生成label.txt了,也不需要像上面预处理下Label,该类会自动生成标签,构造函数如下:

ImageFolder(root,transform= None,target_transforms=None,loader=default_loader) ##其中root指定路径,transform:对PIL_Image进行转换操作,输入参数是loader的返回对象。target_transform:是label的转换,loader:是指定加载图片的函数,默认操作是读取为PIL_Image对象。

通过该函数得到的Lable按照文件夹名顺序排序后形成字典的,比如{类名:序号从0开始}

,一般最好把文件夹命名为从0开始的数字,和Imageloader的实际的Lable一致,如果不是,可以通过self.class_to_ids来查看你得到的数据的映射关系,比如你的文件夹是cat和dog,那么loader就是自动从0开始标签,self.class_to_ids得到的就是{‘cat':0,'dog':1}。

dataset=ImageLoader('root');
dataset.imgs ##返回图片路径和对应的标签
dataset[5][1] ;##返回第5张图的标签
dataset[5][0]; ##返回第5张图的图像数据,显示出来的就是一副图像,这时候并没有转成Tensor格式,所以需要手动转换
dataset[0][0].size(); ##输出第一个图像的大小
##得到的结果如下,表示该图像是3通道,大小为224*224
[3,224,224];

###定义一个transform,对数据进行各种预处理。

mytransform=T.Compose([
   randomSize;
   T.ToTensor(), ##重点是要记得转成Tensor格式
    normlize;
]);
dataset=ImageLoader('root',transform=mytransform);

调用ImageLoader把读取的图像转成dataset存储后,再使用DataLoader对上面得到的图像tensor数据进行抽样,打乱和分批次操作,操作格式如下:

DataLoader(dataset,batch_size,shuffle=False,sampler=None,num_workers=0,collate_fn=default,pin_memory=False,drop_last=False);

其中:

dataset:加载得到的dataset对象,就是上面得到的DataSet和ImageLoader得到的对象(ImageLoader需要进行tensor转换后才行)。

batch_size:批处理的大小

shuffle:是否要把数据进行打乱。(这样可以防止连续多个样本都是同一类别)

sampler:样本抽样.会改变本身dataset的大小(可以在不是batch倍数的时候使用)

num_workers:多进程数量,0表示不使用多进程。

collate_fn:一般采用默认的batch拼接方式。

pin_memory;是否将数据保存在pin_memory里,将这的数据转到GPU会快一些。

drop_last:有可能不是batch的整数倍,将不足一个batch的数据丢弃。

dataloader是一个迭代对象,使用方法与一个迭代器相似,例如:

for batch_data, batch_label in dataloader:
##是按照一batch的数量进行拼接的,以每batch进行迭代。

--------torchvision数据处理和可视化常用工具--------------

models:保存了训练好的模型

datasets:保存了数据集,主要包括minist,imagenet等

transforms:提供常用的数据预处理操作。

make_grid: make_grid(dataloader[0],4):将第一个batch的图像拼接成4*4网格

save_image:直接将tensor格式的数据保存成图像

tensorboard是tensorflow框架使用的,但是也有针对pytorch的Tensorboardx,能读取数据并进行可视化,使用比tensorflow的更加方便,本文主要介绍另外一种工具visdom,pytorch的专属可视化工具,支持数据,图像,文本,视频的显示。visdom有以下两种概念:

env:环境,默认使用Main环境,不同用户的环境可能不同,需要专门指定。

pane:窗格,用于进行可视化,可以拖放,缩放和保存关闭,可以多个显示。

可以使用pip install visdom直接进行安装,在使用visdom的时候需要注意,保存时候需要手动指定保存的env,其次客户端和服务端之间交互采用tornado框架,不会受其他程序的影响。visdom需要使用nohup python -m visdom.server命令启动,放在后台运行。

import visdom
vis=visdom.Visdom(env=u'test');指定一个环境,新建一个客户端,还可以指定host和端口
x=;
y=;
vis.line(X=x,Y=y,win='sinx',opts={'title':'y=sinx'}; #画图
-line,-image,-text,-histgram,-scatter,-bar,-pie.

同时支持pytorch的tensor和Numpy结构,但不支持int float类型,vis.updateTrace更新之前的图。

visdom的画图工具可以接受两种,一种是image,接受二维或者三维的,前者是黑白的,后者是彩色图像,Images接受一个4维向量的nch*w,c可以是1或者3,代表黑白或者彩色的,n表示图片的数量。

--------临时记录下已有的Loss函数-------

nn.CrossEntropyLoss(); ##交叉熵函数

nn.MSELoss(); ##均方差函数

nn.NLLLoss()

nn.NLL2dLoss();

loss函数后面再学习。

以上这篇pytorch中的自定义数据处理详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python查找相似单词的方法
Mar 05 Python
Python多线程编程(五):死锁的形成
Apr 05 Python
Python中正则表达式的详细教程
Apr 30 Python
Python中规范定义命名空间的一些建议
Jun 04 Python
python3 http提交json参数并获取返回值的方法
Dec 19 Python
pandas 把数据写入txt文件每行固定写入一定数量的值方法
Dec 28 Python
Python3中_(下划线)和__(双下划线)的用途和区别
Apr 26 Python
python选取特定列 pandas iloc,loc,icol的使用详解(列切片及行切片)
Aug 06 Python
Python实现清理微信僵尸粉功能示例【基于itchat模块】
May 29 Python
python实现磁盘日志清理的示例
Nov 05 Python
python使用正则表达式匹配txt特定字符串(有换行)
Dec 09 Python
selenium与xpath之获取指定位置的元素的实现
Jan 26 Python
如何基于Python实现自动扫雷
Jan 06 #Python
pytorch 自定义参数不更新方式
Jan 06 #Python
3种python调用其他脚本的方法
Jan 06 #Python
pytorch 实现模型不同层设置不同的学习率方式
Jan 06 #Python
浅析Python3 pip换源问题
Jan 06 #Python
通过实例学习Python Excel操作
Jan 06 #Python
pytorch载入预训练模型后,实现训练指定层
Jan 06 #Python
You might like
新浪微博API开发简介之用户授权(PHP基础篇)
2011/09/25 PHP
Laravel中注册Facades的步骤详解
2016/03/16 PHP
PHP实现冒泡排序的简单实例
2016/05/26 PHP
php遍历替换目录下文件指定内容的方法
2016/11/10 PHP
win10下 php安装seaslog扩展的详细步骤
2020/12/04 PHP
jQuery 解析xml文件
2009/08/09 Javascript
javascript 面向对象编程 聊聊对象的事
2009/09/17 Javascript
JavaScript为对象原型prototype添加属性的两种方式
2010/08/01 Javascript
javascript复制对象使用说明
2011/06/28 Javascript
JS TextArea字符串长度限制代码集合
2012/10/31 Javascript
jQuery选择器之基本选择器与层次选择器
2015/03/03 Javascript
JavaScript中Date对象的常用方法示例
2015/10/24 Javascript
easyui datebox 时间限制,datebox开始时间限制结束时间,datebox截止日期比起始日期大的实现代码
2017/01/12 Javascript
javascript循环链表之约瑟夫环的实现方法
2017/01/16 Javascript
Angular17之Angular自定义指令详解
2018/01/21 Javascript
vueJs实现DOM加载完之后自动下拉到底部的实例代码
2018/08/31 Javascript
使用vue点击li,获取当前点击li父辈元素的属性值方法
2018/09/12 Javascript
JavaScript 高性能数组去重的方法
2018/09/20 Javascript
Vue 组件封装 并使用 NPM 发布的教程
2018/09/30 Javascript
Node.js+Express+Mysql 实现增删改查
2019/04/03 Javascript
python统计cpu利用率的方法
2015/06/02 Python
python生成随机密码或随机字符串的方法
2015/07/03 Python
pandas值替换方法
2018/07/10 Python
Python 创建新文件时避免覆盖已有的同名文件的解决方法
2018/11/16 Python
python如何编写类似nmap的扫描工具
2020/11/06 Python
详解python polyscope库的安装和例程
2020/11/13 Python
HTML5 Canvas图像模糊完美解决办法
2018/02/06 HTML / CSS
HTML5边玩边学(1)画布实现方法
2010/09/21 HTML / CSS
澳大利亚最大的网上油画销售画廊:Direct Art Australia
2018/04/15 全球购物
万宝龙英国官网:Montblanc手表、书写工具、皮革和珠宝
2018/10/16 全球购物
电子商务毕业生求职信
2013/11/10 职场文书
《圆明园的毁灭》教学反思
2014/02/28 职场文书
村主任群众路线个人对照检查材料
2014/09/26 职场文书
优秀员工自荐书
2015/03/06 职场文书
2016年六一儿童节开幕词
2016/03/04 职场文书
浅谈MySQL next-key lock 加锁范围
2021/06/07 MySQL