python数据预处理 :样本分布不均的解决(过采样和欠采样)


Posted in Python onFebruary 29, 2020

何为样本分布不均:

样本分布不均衡就是指样本差异非常大,例如共1000条数据样本的数据集中,其中占有10条样本分类,其特征无论如何你和也无法实现完整特征值的覆盖,此时属于严重的样本分布不均衡。

为何要解决样本分布不均:

样本分部不均衡的数据集也是很常见的:比如恶意刷单、黄牛订单、信用卡欺诈、电力窃电、设备故障、大企业客户流失等。

样本不均衡将导致样本量少的分类所包含的特征过少,很难从中提取规律,即使得到分类模型,也容易产生过度依赖于有限的数量样本而导致过拟合问题,当模型应用到新的数据上时,模型的准确性和健壮性将会很差。

样本分布不均的解决方法:

过采样 通过增加分类中样本较少的类别的采样数量来实现平衡,最直接的方法是简单复制小样本数据,缺点是如果特征少,会导致过拟合的问题。经过改进的过抽样方法通过在少数类中加入随机噪声、干扰数据或通过一定规则产生新的合成样本。

欠采样 通过减少分类中多数类样本的数量来实现样本均衡,最直接的方法是随机去掉一些多数类样本来减小多数类的规模,缺点是会丢失多数类中的一些重要信息。

设置权重 对不同样本数量的类别赋予不同的权重(通常会设置为与样本量成反比)

集成方法 每次生成训练集时使用所有分类中的小样本量,同时从分类中的大样本量中随机抽取数据来与小样本量合并构成训练集,这样反复多次会得到很多训练集和训练模型。最后在应用时,使用组合方法(例如投票、加权投票等)产生分类预测结果。这种方法类似于随机森林。缺点是,比较吃计算资源,费时。

python代码:

# 生成不平衡分类数据集
from collections import Counter
from sklearn.datasets import make_classification
X, y = make_classification(n_samples=3000, n_features=2, n_informative=2,
              n_redundant=0, n_repeated=0, n_classes=3,
              n_clusters_per_class=1,
              weights=[0.1, 0.05, 0.85],
              class_sep=0.8, random_state=2018)
Counter(y)
# Counter({2: 2532, 1: 163, 0: 305})

# 使用RandomOverSampler从少数类的样本中进行随机采样来增加新的样本使各个分类均衡
from imblearn.over_sampling import RandomOverSampler
 
ros = RandomOverSampler(random_state=0)
X_resampled, y_resampled = ros.fit_sample(X, y)
sorted(Counter(y_resampled).items())
# [(0, 2532), (1, 2532), (2, 2532)]

# SMOTE: 对于少数类样本a, 随机选择一个最近邻的样本b, 然后从a与b的连线上随机选取一个点c作为新的少数类样本
from imblearn.over_sampling import SMOTE
 
X_resampled_smote, y_resampled_smote = SMOTE().fit_sample(X, y)
 
sorted(Counter(y_resampled_smote).items())
# [(0, 2532), (1, 2532), (2, 2532)]

# ADASYN: 关注的是在那些基于K最近邻分类器被错误分类的原始样本附近生成新的少数类样本
from imblearn.over_sampling import ADASYN

X_resampled_adasyn, y_resampled_adasyn = ADASYN().fit_sample(X, y)
 
sorted(Counter(y_resampled_adasyn).items())
# [(0, 2522), (1, 2520), (2, 2532)]

# RandomUnderSampler函数是一种快速并十分简单的方式来平衡各个类别的数据: 随机选取数据的子集.
from imblearn.under_sampling import RandomUnderSampler
rus = RandomUnderSampler(random_state=0)
X_resampled, y_resampled = rus.fit_sample(X, y)
 
sorted(Counter(y_resampled).items())
# [(0, 163), (1, 163), (2, 163)]

# 在之前的SMOTE方法中, 当由边界的样本与其他样本进行过采样差值时, 很容易生成一些噪音数据. 因此, 在过采样之后需要对样本进行清洗. 
# 这样TomekLink 与 EditedNearestNeighbours方法就能实现上述的要求.
from imblearn.combine import SMOTEENN
smote_enn = SMOTEENN(random_state=0)
X_resampled, y_resampled = smote_enn.fit_sample(X, y)
 
sorted(Counter(y_resampled).items())
# [(0, 2111), (1, 2099), (2, 1893)]

from imblearn.combine import SMOTETomek
smote_tomek = SMOTETomek(random_state=0)
X_resampled, y_resampled = smote_tomek.fit_sample(X, y)
 
sorted(Counter(y_resampled).items())
# [(0, 2412), (1, 2414), (2, 2396)]

# 使用SVM的权重调节处理不均衡样本 权重为balanced 意味着权重为各分类数据量的反比
from sklearn.svm import SVC 
svm_model = SVC(class_weight='balanced')
svm_model.fit(X, y)

# # EasyEnsemble 通过对原始的数据集进行随机下采样实现对数据集进行集成.
# EasyEnsemble 有两个很重要的参数: (i) n_subsets 控制的是子集的个数 and (ii) replacement 决定是有放回还是无放回的随机采样.
from imblearn.ensemble import EasyEnsemble
ee = EasyEnsemble(random_state=0, n_subsets=10)
X_resampled, y_resampled = ee.fit_sample(X, y)
sorted(Counter(y_resampled[0]).items())
# [(0, 163), (1, 163), (2, 163)]

# BalanceCascade(级联平衡)的方法通过使用分类器(estimator参数)来确保那些被错分类的样本在下一次进行子集选取的时候也能被采样到. 同样, n_max_subset 参数控制子集的个数, 以及可以通过设置bootstrap=True来使用bootstraping(自助法).
from imblearn.ensemble import BalanceCascade
from sklearn.linear_model import LogisticRegression
bc = BalanceCascade(random_state=0,
          estimator=LogisticRegression(random_state=0),
          n_max_subset=4)
X_resampled, y_resampled = bc.fit_sample(X, y)
 
sorted(Counter(y_resampled[0]).items())
# [(0, 163), (1, 163), (2, 163)]

# BalancedBaggingClassifier 允许在训练每个基学习器之前对每个子集进行重抽样. 简而言之, 该方法结合了EasyEnsemble采样器与分类器(如BaggingClassifier)的结果.
from sklearn.tree import DecisionTreeClassifier
from imblearn.ensemble import BalancedBaggingClassifier
bbc = BalancedBaggingClassifier(base_estimator=DecisionTreeClassifier(),
                ratio='auto',
                replacement=False,
                random_state=0)
bbc.fit(X, y)

以上这篇python数据预处理 :样本分布不均的解决(过采样和欠采样)就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
wxPython中文教程入门实例
Jun 09 Python
利用Python脚本在Nginx和uwsgi上部署MoinMoin的教程
May 05 Python
Numpy截取指定范围内的数据方法
Nov 14 Python
计算机二级python学习教程(1) 教大家如何学习python
May 16 Python
在python image 中安装中文字体的实现方法
Aug 22 Python
Pandas操作CSV文件的读写实现方法
Nov 13 Python
python+selenium+Chrome options参数的使用
Mar 18 Python
Django如何使用redis作为缓存
May 21 Python
Python中常见的数制转换有哪些
May 27 Python
Python常用扩展插件使用教程解析
Nov 02 Python
python中使用np.delete()的实例方法
Feb 01 Python
Django如何创作一个简单的最小程序
May 12 Python
python实现门限回归方式
Feb 29 #Python
Python3.9又更新了:dict内置新功能
Feb 28 #Python
python实现logistic分类算法代码
Feb 28 #Python
python GUI库图形界面开发之PyQt5打印控件QPrinter详细使用方法与实例
Feb 28 #Python
使用sklearn的cross_val_score进行交叉验证实例
Feb 28 #Python
彻底搞懂 python 中文乱码问题(深入分析)
Feb 28 #Python
python GUI库图形界面开发之PyQt5状态栏控件QStatusBar详细使用方法实例
Feb 28 #Python
You might like
php 获取完整url地址
2008/12/20 PHP
php计算两个日期时间差(返回年、月、日)
2014/06/19 PHP
php支付宝手机网页支付类实例
2015/03/04 PHP
php通过淘宝API查询IP地址归属等信息
2015/12/25 PHP
PHP封装的MSSql操作类完整实例
2016/05/26 PHP
js动态拼接正则表达式的两种方法
2014/03/04 Javascript
js模拟C#中List的简单实例
2014/03/06 Javascript
浅析javascript中的DOM
2015/03/01 Javascript
Javascript数据结构与算法之列表详解
2015/03/12 Javascript
跟我学习javascript的严格模式
2015/11/16 Javascript
Angular的Bootstrap(引导)和Compiler(编译)机制
2016/06/20 Javascript
Vue2.0设置全局样式(less/sass和css)
2017/11/18 Javascript
使用Vuex实现一个笔记应用的方法
2018/03/13 Javascript
Vue核心概念Getter的使用方法
2019/01/18 Javascript
vue的三种图片引入方式代码实例
2019/11/19 Javascript
[59:30]VG vs LGD 2019国际邀请赛淘汰赛 胜者组 BO3 第二场 8.22
2019/09/05 DOTA
python定时执行指定函数的方法
2015/05/27 Python
Python中强大的命令行库click入门教程
2016/12/26 Python
Python实现的查询mysql数据库并通过邮件发送信息功能
2018/05/17 Python
Python设计模式之迭代器模式原理与用法实例分析
2019/01/10 Python
python 动态调用函数实例解析
2019/10/21 Python
用Python画小女孩放风筝的示例
2019/11/23 Python
python 常见的反爬虫策略
2020/09/27 Python
草莓网化妆品加拿大网站:Strawberrynet Canada
2016/09/20 全球购物
文秘人员工作职责
2014/01/31 职场文书
哈弗商学院毕业生求职信
2014/02/26 职场文书
社区消防工作实施方案
2014/03/21 职场文书
给校长的建议书500字
2014/05/15 职场文书
教学改革问题查摆整改措施
2014/09/27 职场文书
党校学习党性分析材料
2014/12/19 职场文书
经理聘任证明
2015/03/02 职场文书
2015年调度员工作总结
2015/04/30 职场文书
2015年公司后勤管理工作总结
2015/05/13 职场文书
党小组意见范文
2015/06/08 职场文书
2015年国庆节寄语
2015/08/17 职场文书
springboot集成flyway自动创表的详细配置
2021/06/26 Java/Android