利用ImageAI库只需几行python代码实现目标检测


Posted in Python onAugust 09, 2019

什么是目标检测

目标检测关注图像中特定的物体目标,需要同时解决解决定位(localization) + 识别(Recognition)。相比分类,检测给出的是对图片前景和背景的理解,我们需要从背景中分离出感兴趣的目标,并确定这一目标的描述(类别和位置),因此检测模型的输出是一个列表,列表的每一项使用一个数组给出检出目标的类别和位置(常用矩形检测框的坐标表示)。

通俗的说,Object Detection的目的是在目标图中将目标用一个框框出来,并且识别出这个框中的是啥,而且最好的话是能够将图片的所有物体都框出来。

利用ImageAI库只需几行python代码实现目标检测

目标检测算法

目前目标检测领域的深度学习方法主要分为两类:两阶段(Two Stages)的目标检测算法;一阶段(One Stage)目标检测算法。

Two Stages

首先由算法(algorithm)生成一系列作为样本的候选框,再通过卷积神经网络进行样本(Sample)分类。也称为基于候选区域(Region Proposal)的算法。常见的算法有R-CNN、Fast R-CNN、Faster R-CNN等等。

One Stage

不需要产生候选框,直接将目标框定位的问题转化为回归(Regression)问题处理,也称为基于端到端(End-to-End)的算法。常见的算法有YOLO、SSD等等。

python实现

本文主要讲述如何实现目标检测,至于背后的原理不过多赘述,可以去看相关的论文。

ImageAI是一个简单易用的计算机视觉Python库,使得开发者可以轻松的将最新的最先进的人工智能功能整合进他们的应用。

ImageAI本着简洁的原则,支持最先进的机器学习算法,用于图像预测,自定义图像预测,物体检测,视频检测,视频对象跟踪和图像预测训练。

依赖

•Python 3.5.1(及更高版本)
•pip3
•Tensorflow 1.4.0(及更高版本)
•Numpy 1.13.1(及更高版本)
•SciPy 0.19.1(及更高版本)
•OpenCV
•pillow
•Matplotlib
•h5py
•Keras 2.x

安装

•命令行安装

pip3 install https://github.com/OlafenwaMoses/ImageAI/releases/download/2.0.1/imageai-2.0.1-py3-none-any.whl

•下载imageai-2.1.0-py3-none-any.whl 安装文件并在命令行中指定安装文件的路径

pip3 install .\imageai-2.1.0-py3-none-any.whl

使用

Image支持的深度学习的算法有RetinaNet,YOLOv3,TinyYoLOv3。ImageAI已经在COCO数据集上预先训练好了对应的三个模型,根据需要可以选择不同的模型。可以通过下面的链接进行下载使用:

•Download RetinaNet Model - resnet50_coco_best_v2.0.1.h5
•Download YOLOv3 Model - yolo.h5
•Download TinyYOLOv3 Model - yolo-tiny.h5

以上模型可以检测并识别以下80种不同的目标:

person,   bicycle,   car,   motorcycle,   airplane,
bus,   train,   truck,   boat,   traffic light,   fire hydrant, stop_sign,
parking meter,   bench,   bird,   cat,   dog,   horse,   sheep, cow,
elephant,   bear,   zebra,   giraffe,   backpack,   umbrella,
handbag,   tie,   suitcase, frisbee,   skis,   snowboard, 
sports ball,   kite,   baseball bat,   baseball glove,   skateboard,
surfboard,   tennis racket,   bottle,   wine glass,   cup,   fork,   knife,
spoon,   bowl, banana,   apple,   sandwich,   orange,   broccoli,   carrot,
hot dog,   pizza,   donot,   cake,   chair,   couch,   potted plant,   bed,
dining table,   toilet,   tv,   laptop,   mouse,   remote,   keyboard,
cell phone,   microwave,   oven,   toaster,   sink,   refrigerator,
book,   clock,   vase,   scissors,   teddy bear,   hair dryer,
toothbrush

先来看看完整的代码,使用YOLOv3算法对13张照片进行目标识别。

from imageai.Detection import ObjectDetection
import os

detector = ObjectDetection()
detector.setModelTypeAsYOLOv3()
detector.setModelPath("./model/yolo.h5")
detector.loadModel()

path = os.getcwd()
input_image_list = os.listdir(path+"\pic\input")
input_image_list = sorted(input_image_list, key = lambda i:len(i),reverse = False)
size = len(input_image_list)
for i in range(size):
 input_image_path = os.path.join(path+"\pic\input", input_image_list[i])
 output_image_path = os.path.join(path+"\pic\output", input_image_list[i])
 detections, extract_detected_objects = detector.detectObjectsFromImage(input_image=input_image_path,
             output_image_path=output_image_path,
             extract_detected_objects=True)
 print('------------------- %d -------------------' % int(i + 1))
 for eachObject in detections:
  print(eachObject["name"], " : ", eachObject["percentage_probability"], " : ", eachObject["box_points"])
 print('------------------- %d -------------------' % int(i + 1))

首先第一行导入ImageAI Object Detection类,在第二行导入os库。

 然后创建了ObjectDetection类的新实例,接着就可以选择要使用的算法。分别有以下三个函数:

.setModelTypeAsRetinaNet()
.setModelTypeAsYOLOv3()
.setModelTypeAsTinyYOLOv3()

选择好算法之后就要设置模型文件路径,这里给出的路径必须要和选择的算法一样。

.setModelPath()

- 参数path(必须):模型文件的路径

载入模型。

.loadModel()

- 参数detection_speed(可选):最多可以减少80%的时间,单身会导致精确度的下降。可选的值有: “normal”, “fast”, “faster”, “fastest” 和 “flash”。默认值是 “normal”。

通过os库的函数得到输入输出文件的路径等,这不是本文重点,跳过不表。

 开始对图像进行目标检测。

.detectObjectsFromImage()

- 参数input_image(必须):待检测图像的路径
- 参数output_image(必须):输出图像的路径
- 参数parameter minimum_percentage_probability(可选):能接受的最低预测概率。默认值是50%。
- 参数display_percentage_probability(可选):是否展示预测的概率。默认值是True。
- 参数display_object_name(可选):是否展示识别物品的名称。默认值是True。
- 参数extract_detected_objects(可选):是否将识别出的物品图片保存。默认是False。

返回值根据不同的参数也有不同,但都会返回一个an array of dictionaries。字典包括以下几个属性:

* name (string)
* percentage_probability (float)
* box_points (tuple of x1,y1,x2 and y2 coordinates)

前面说过可以识别80种目标,在这里也可以选择只识别自己想要的目标。

custom = detector.CustomObjects(person=True, dog=True)

detections = detector.detectCustomObjectsFromImage( custom_objects=custom, input_image=os.path.join(execution_path , "image3.jpg"), output_image_path=os.path.join(execution_path , "image3new-custom.jpg"), minimum_percentage_probability=30)

首先用定义自己想要的目标,其余的目标会被设置为False。然后配合.detectCustomObjectsFromImage()进行目标检测。

主要的代码基本如上所述,接下来看结果。先看看图片中只有一个目标的效果。

利用ImageAI库只需几行python代码实现目标检测

利用ImageAI库只需几行python代码实现目标检测

------------------- 10 -------------------
dog  :  98.83476495742798  :  (117, 91, 311, 360)
dog  :  99.24255609512329  :  (503, 133, 638, 364)
dog  :  99.274742603302  :  (338, 38, 487, 379)
------------------- 10 -------------------

效果还是不错的。再看看如果图片中有多个目标识别的结果如何。

利用ImageAI库只需几行python代码实现目标检测

利用ImageAI库只需几行python代码实现目标检测

------------------- 4 -------------------
book : 55.76887130737305 : (455, 74, 487, 146)
book : 82.22097754478455 : (466, 11, 482, 69)
tv : 99.34800863265991 : (25, 40, 182, 161)
bed : 88.7190580368042 : (60, 264, 500, 352)
cat : 99.54025745391846 : (214, 125, 433, 332)
------------------- 4 -------------------

识别度还是很高的,背后人眼都看不清的书本都能被识别。

附录

GitHub:https://github.com/Professorchen/Computer-Vision/tree/master/object-detection

总结

以上所述是小编给大家介绍的利用ImageAI库只需几行python代码超简实现目标检测,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对三水点靠木网站的支持!
如果你觉得本文对你有帮助,欢迎转载,烦请注明出处,谢谢!

Python 相关文章推荐
python3.3教程之模拟百度登陆代码分享
Jan 16 Python
Python里隐藏的“禅”
Jun 16 Python
Python实现列表转换成字典数据结构的方法
Mar 11 Python
python编写简单爬虫资料汇总
Mar 22 Python
python数据结构之链表详解
Sep 12 Python
谈谈python中GUI的选择
Mar 01 Python
在Pandas中给多层索引降级的方法
Nov 16 Python
Python 移动光标位置的方法
Jan 20 Python
python中几种自动微分库解析
Aug 29 Python
PYTHON EVAL的用法及注意事项解析
Sep 06 Python
Python3中的f-Strings增强版字符串格式化方法
Mar 04 Python
python 中[0]*2与0*2的区别说明
May 10 Python
python操作excel让工作自动化
Aug 09 #Python
python笔记_将循环内容在一行输出的方法
Aug 08 #Python
python中的列表与元组的使用
Aug 08 #Python
详解python中的数据类型和控制流
Aug 08 #Python
python爬虫selenium和phantomJs使用方法解析
Aug 08 #Python
Python2和3字符编码的区别知识点整理
Aug 08 #Python
Python编程中类与类的关系详解
Aug 08 #Python
You might like
基于PHP读取TXT文件向数据库导入海量数据的方法
2013/04/23 PHP
PHP 基于Yii框架中使用smarty模板的方法详解
2013/06/13 PHP
php数组转换js数组操作及json_encode的用法详解
2013/10/26 PHP
PHP检测字符串是否为UTF8编码的常用方法
2014/11/21 PHP
PHP生成RSS文件类实例
2014/12/05 PHP
JavaScript 三种不同位置代码的写法
2009/10/25 Javascript
JS中表单的使用小结
2014/01/11 Javascript
jquery简单图片切换显示效果实现方法
2015/01/14 Javascript
jQuery实现简单的间隔向上滚动效果
2015/03/09 Javascript
nodejs中的fiber(纤程)库详解
2015/03/24 NodeJs
使用js复制链接中的部分文字的方法
2015/07/30 Javascript
JavaScript设置表单上传时文件个数的方法
2015/08/11 Javascript
基于javascript实现图片滑动效果
2016/05/07 Javascript
AngularJs每天学习之总体介绍
2017/08/07 Javascript
layer子层给父层页面元素赋值,以达到向父层页面传值的效果实例
2017/09/22 Javascript
详解node.js的http模块实例演示
2018/07/12 Javascript
vue+element-ui集成随机验证码+用户名+密码的form表单验证功能
2018/08/05 Javascript
Element UI框架中巧用树选择器的实现
2018/12/12 Javascript
30分钟用Node.js构建一个API服务器的步骤详解
2019/05/24 Javascript
node基于async/await对mysql进行封装
2019/06/20 Javascript
nuxt框架中对vuex进行模块化设置的实现方法
2019/09/06 Javascript
[02:00]DAC2018主宣传片——龙征四海,剑问东方
2018/03/20 DOTA
Python中的filter()函数的用法
2015/04/27 Python
浅谈Python中用datetime包进行对时间的一些操作
2016/06/23 Python
python 定时任务去检测服务器端口是否通的实例
2019/01/26 Python
pytorch:torch.mm()和torch.matmul()的使用
2019/12/27 Python
解决Python Matplotlib绘图数据点位置错乱问题
2020/05/16 Python
基于Python爬取51cto博客页面信息过程解析
2020/08/25 Python
python MD5加密的示例
2020/10/19 Python
python实现控制台输出颜色
2021/03/02 Python
CSS3等相关属性制作分页导航实现代码
2012/12/24 HTML / CSS
HTML5播放实现rtmp流直播
2020/06/16 HTML / CSS
意大利在线大学图书馆:Libreria universitaria
2019/07/16 全球购物
用JAVA SOCKET编程,读服务器几个字符,再写入本地显示
2012/11/25 面试题
机关党建工作汇报材料
2014/08/20 职场文书
画展邀请函
2015/01/31 职场文书