Python3.5 Pandas模块缺失值处理和层次索引实例详解


Posted in Python onApril 23, 2019

本文实例讲述了Python3.5 Pandas模块缺失值处理和层次索引。分享给大家供大家参考,具体如下:

1、pandas缺失值处理

Python3.5 Pandas模块缺失值处理和层次索引实例详解

Python3.5 Pandas模块缺失值处理和层次索引实例详解

Python3.5 Pandas模块缺失值处理和层次索引实例详解

import numpy as np
import pandas as pd
from pandas import Series,DataFrame

df3 = DataFrame([
  ["Tom",np.nan,456.67,"M"],
  ["Merry",34,345.56,np.nan],
  [np.nan,np.nan,np.nan,np.nan],
  ["John",23,np.nan,"M"],
  ["Joe",18,385.12,"F"]
],columns = ["name","age","salary","gender"])

print(df3)
print("=======判断NaN值=======")
print(df3.isnull())
print("=======判断非NaN值=======")
print(df3.notnull())
print("=======删除包含NaN值的行=======")
print(df3.dropna())
print("=======删除全部为NaN值的行=======")
print(df3.dropna(how="all"))

df3.ix[2,0] = "Gerry"    #修改第2行第0列的值
print(df3)

print("=======删除包含NaN值的列=======")
print(df3.dropna(axis=1))

运行结果:

   name   age  salary gender
0    Tom   NaN  456.67      M
1  Merry  34.0  345.56    NaN
2    NaN   NaN     NaN    NaN
3   John  23.0     NaN      M
4    Joe  18.0  385.12      F
=======判断NaN值=======
    name    age salary gender
0  False   True  False  False
1  False  False  False   True
2   True   True   True   True
3  False  False   True  False
4  False  False  False  False
=======判断非NaN值=======
    name    age salary gender
0   True  False   True   True
1   True   True   True  False
2  False  False  False  False
3   True   True  False   True
4   True   True   True   True
=======删除包含NaN值的行=======
  name   age  salary gender
4  Joe  18.0  385.12      F
=======删除全部为NaN值的行=======
    name   age  salary gender
0    Tom   NaN  456.67      M
1  Merry  34.0  345.56    NaN
3   John  23.0     NaN      M
4    Joe  18.0  385.12      F
    name   age  salary gender
0    Tom   NaN  456.67      M
1  Merry  34.0  345.56    NaN
2  Gerry   NaN     NaN    NaN
3   John  23.0     NaN      M
4    Joe  18.0  385.12      F
=======删除包含NaN值的列=======
    name
0    Tom
1  Merry
2  Gerry
3   John
4    Joe

Python3.5 Pandas模块缺失值处理和层次索引实例详解

import numpy as np
import pandas as pd
from pandas import Series,DataFrame

df4 = DataFrame(np.random.randn(7,3))
print(df4)

df4.ix[:4,1] = np.nan    #第0至3行,第1列的数据
df4.ix[:2,2] = np.nan
print(df4)

print(df4.fillna(0))    #将缺失值用传入的指定值0替换

print(df4.fillna({1:0.5,2:-1}))   #将缺失值按照指定形式填充

运行结果:

          0         1         2
0 -0.737618 -0.530302 -2.716457
1  0.810339  0.063028 -0.341343
2  0.070564  0.347308 -0.121137
3 -0.501875 -1.573071 -0.816077
4 -2.159196 -0.659185 -0.885185
5  0.175086 -0.954109 -0.758657
6  0.395744 -0.875943  0.950323
          0         1         2
0 -0.737618       NaN       NaN
1  0.810339       NaN       NaN
2  0.070564       NaN       NaN
3 -0.501875       NaN -0.816077
4 -2.159196       NaN -0.885185
5  0.175086 -0.954109 -0.758657
6  0.395744 -0.875943  0.950323
          0         1         2
0 -0.737618  0.000000  0.000000
1  0.810339  0.000000  0.000000
2  0.070564  0.000000  0.000000
3 -0.501875  0.000000 -0.816077
4 -2.159196  0.000000 -0.885185
5  0.175086 -0.954109 -0.758657
6  0.395744 -0.875943  0.950323
          0         1         2
0 -0.737618  0.500000 -1.000000
1  0.810339  0.500000 -1.000000
2  0.070564  0.500000 -1.000000
3 -0.501875  0.500000 -0.816077
4 -2.159196  0.500000 -0.885185
5  0.175086 -0.954109 -0.758657
6  0.395744 -0.875943  0.950323

2、pandas常用数学统计方法

Python3.5 Pandas模块缺失值处理和层次索引实例详解

Python3.5 Pandas模块缺失值处理和层次索引实例详解
Python3.5 Pandas模块缺失值处理和层次索引实例详解

Python3.5 Pandas模块缺失值处理和层次索引实例详解

import numpy as np
import pandas as pd
from pandas import Series,DataFrame

#pandas常用数学统计方法

arr = np.array([
  [98.5,89.5,88.5],
  [98.5,85.5,88],
  [70,85,60],
  [80,85,82]
])
df1 = DataFrame(arr,columns=["语文","数学","英语"])
print(df1)
print("=======针对列计算总统计值=======")
print(df1.describe())
print("=======默认计算各列非NaN值个数=======")
print(df1.count())
print("=======计算各行非NaN值个数=======")
print(df1.count(axis=1))

运行结果:

     语文    数学    英语
0  98.5  89.5  88.5
1  98.5  85.5  88.0
2  70.0  85.0  60.0
3  80.0  85.0  82.0
=======针对列计算总统计值=======
              语文         数学         英语
count   4.000000   4.000000   4.000000
mean   86.750000  86.250000  79.625000
std    14.168627   2.179449  13.412525
min    70.000000  85.000000  60.000000
25%    77.500000  85.000000  76.500000
50%    89.250000  85.250000  85.000000
75%    98.500000  86.500000  88.125000
max    98.500000  89.500000  88.500000
=======默认计算各列非NaN值个数=======
语文    4
数学    4
英语    4
dtype: int64
=======计算各行非NaN值个数=======
0    3
1    3
2    3
3    3
dtype: int64

Python3.5 Pandas模块缺失值处理和层次索引实例详解

Python3.5 Pandas模块缺失值处理和层次索引实例详解

import numpy as np
import pandas as pd
from pandas import Series,DataFrame、

#2.pandas相关系数与协方差
df2 = DataFrame({
  "GDP":[12,23,34,45,56],
  "air_temperature":[23,25,26,27,30],
  "year":["2001","2002","2003","2004","2005"]
})

print(df2)
print("=========相关系数========")
print(df2.corr())
print("=========协方差========")
print(df2.cov())
print("=========两个量之间的相关系数========")
print(df2["GDP"].corr(df2["air_temperature"]))
print("=========两个量之间协方差========")
print(df2["GDP"].cov(df2["air_temperature"]))

运行结果:

 GDP  air_temperature  year
0   12               23  2001
1   23               25  2002
2   34               26  2003
3   45               27  2004
4   56               30  2005
=========相关系数========
                      GDP  air_temperature
GDP              1.000000         0.977356
air_temperature  0.977356         1.000000
=========协方差========
                   GDP  air_temperature
GDP              302.5             44.0
air_temperature   44.0              6.7
=========两个量之间的相关系数========
0.97735555485
=========两个量之间协方差========
44.0

Python3.5 Pandas模块缺失值处理和层次索引实例详解

Python3.5 Pandas模块缺失值处理和层次索引实例详解

Python3.5 Pandas模块缺失值处理和层次索引实例详解

Python3.5 Pandas模块缺失值处理和层次索引实例详解

import numpy as np
import pandas as pd
from pandas import Series,DataFrame

#3.pandas唯一值、值计数及成员资格

df3 = DataFrame({
  "order_id":["1001","1002","1003","1004","1005"],
  "member_id":["m01","m01","m02","m01","m02",],
  "order_amt":[345,312.2,123,250.2,235]
})

print(df3)

print("=========去重后的数组=========")
print(df3["member_id"].unique())

print("=========值出现的频率=========")
print(df3["member_id"].value_counts())

print("=========成员资格=========")
df3 = df3["member_id"]
mask = df3.isin(["m01"])
print(mask)
print(df3[mask])

运行结果:

 member_id  order_amt order_id
0       m01      345.0     1001
1       m01      312.2     1002
2       m02      123.0     1003
3       m01      250.2     1004
4       m02      235.0     1005
=========去重后的数组=========
['m01' 'm02']
=========值出现的频率=========
m01    3
m02    2
Name: member_id, dtype: int64
=========成员资格=========
0     True
1     True
2    False
3     True
4    False
Name: member_id, dtype: bool
0    m01
1    m01
3    m01
Name: member_id, dtype: object

3、pandas层次索引

Python3.5 Pandas模块缺失值处理和层次索引实例详解

Python3.5 Pandas模块缺失值处理和层次索引实例详解

Python3.5 Pandas模块缺失值处理和层次索引实例详解

Python3.5 Pandas模块缺失值处理和层次索引实例详解

import numpy as np
import pandas as pd
from pandas import Series,DataFrame

#3.pandas层次索引
data = Series([998.4,6455,5432,9765,5432],
       index=[["2001","2001","2001","2002","2002"],
       ["苹果","香蕉","西瓜","苹果","西瓜"]]
       )
print(data)

df4 = DataFrame({
  "year":[2001,2001,2002,2002,2003],
  "fruit":["apple","banana","apple","banana","apple"],
  "production":[2345,5632,3245,6432,4532],
  "profits":[245.6,432.7,534.1,354,467.8]
})

print(df4)
print("=======层次化索引=======")
df4 = df4.set_index(["year","fruit"])
print(df4)
print("=======依照索引取值=======")
print(df4.ix[2002,"apple"])
print("=======依照层次化索引统计数据=======")
print(df4.sum(level="year"))
print(df4.mean(level="fruit"))
print(df4.min(level=["year","fruit"]))

运行结果:

2001  苹果     998.4
      香蕉    6455.0
      西瓜    5432.0
2002  苹果    9765.0
      西瓜    5432.0
dtype: float64
    fruit  production  profits  year
0   apple        2345    245.6  2001
1  banana        5632    432.7  2001
2   apple        3245    534.1  2002
3  banana        6432    354.0  2002
4   apple        4532    467.8  2003
=======层次化索引=======
             production  profits
year fruit
2001 apple         2345    245.6
     banana        5632    432.7
2002 apple         3245    534.1
     banana        6432    354.0
2003 apple         4532    467.8
=======依照索引取值=======
production    3245.0
profits        534.1
Name: (2002, apple), dtype: float64
=======依照层次化索引统计数据=======
      production  profits
year
2001        7977    678.3
2002        9677    888.1
2003        4532    467.8
        production     profits
fruit
apple         3374  415.833333
banana        6032  393.350000
             production  profits
year fruit
2001 apple         2345    245.6
     banana        5632    432.7
2002 apple         3245    534.1
     banana        6432    354.0
2003 apple         4532    467.8

希望本文所述对大家Python程序设计有所帮助。

Python 相关文章推荐
python创建临时文件夹的方法
Jul 06 Python
Python实现可自定义大小的截屏功能
Jan 20 Python
python 实现selenium断言和验证的方法
Feb 13 Python
python实现关闭第三方窗口的方法
Jun 28 Python
树莓派安装OpenCV3完整过程的实现
Oct 10 Python
python rolling regression. 使用 Python 实现滚动回归操作
Jun 08 Python
用python实现名片管理系统
Jun 18 Python
python+requests实现接口测试的完整步骤
Oct 27 Python
Python3 + Appium + 安卓模拟器实现APP自动化测试并生成测试报告
Jan 27 Python
python flask框架快速入门
May 14 Python
python 标准库原理与用法详解之os.path篇
Oct 24 Python
Python开发五子棋小游戏
Apr 28 Python
Python3.5 Pandas模块之DataFrame用法实例分析
Apr 23 #Python
Python3.5 Pandas模块之Series用法实例分析
Apr 23 #Python
使用Python控制摄像头拍照并发邮件
Apr 23 #Python
详解Python静态网页爬取获取高清壁纸
Apr 23 #Python
Python matplotlib画图与中文设置操作实例分析
Apr 23 #Python
Python实现的删除重复文件或图片功能示例【去重】
Apr 23 #Python
详解Python 函数如何重载?
Apr 23 #Python
You might like
discuz论坛 用户登录 后台程序代码
2008/11/27 PHP
Zend Framework中的简单工厂模式 图文
2012/07/10 PHP
PHP内核探索:变量概述
2014/01/30 PHP
Yii使用DeleteAll连表删除出现报错问题的解决方法
2016/07/14 PHP
javascript学习笔记(十二) RegExp类型介绍
2012/06/20 Javascript
使用cluster 将自己的Node服务器扩展为多线程服务器
2014/11/10 Javascript
javascript正则表达式使用replace()替换手机号的方法
2015/01/19 Javascript
原生js的RSA和AES加密解密算法
2016/10/08 Javascript
webpack 3.X学习之多页面打包的方法
2018/09/04 Javascript
[01:13:51]TNC vs Serenity 2018国际邀请赛小组赛BO2 第二场 8.18
2018/08/19 DOTA
Python中删除文件的程序代码
2011/03/13 Python
python抓取京东价格分析京东商品价格走势
2014/01/09 Python
java直接调用python脚本的例子
2014/02/16 Python
简介Python中用于处理字符串的center()方法
2015/05/18 Python
设计模式中的原型模式在Python程序中的应用示例
2016/03/02 Python
基于Python数据可视化利器Matplotlib,绘图入门篇,Pyplot详解
2017/10/13 Python
Python图片转换成矩阵,矩阵数据转换成图片的实例
2018/07/02 Python
Python中浅拷贝copy与深拷贝deepcopy的简单理解
2018/10/26 Python
spark dataframe 将一列展开,把该列所有值都变成新列的方法
2019/01/29 Python
详解Numpy数组转置的三种方法T、transpose、swapaxes
2019/05/27 Python
Python 转换RGB颜色值的示例代码
2019/10/13 Python
Python 字节流,字符串,十六进制相互转换实例(binascii,bytes)
2020/05/11 Python
Python中的xlrd模块使用原理解析
2020/05/21 Python
解决pycharm导入numpy包的和使用时报错:RuntimeError: The current Numpy installation (‘D:\\python3.6\\lib\\site-packa的问题
2020/12/08 Python
CSS3 icon font完全指南(CSS3 font 会取代icon图标)
2013/01/06 HTML / CSS
使用css3 属性如何丰富图片样式(圆角 阴影 渐变)
2012/11/22 HTML / CSS
AmazeUI中各种的导航式菜单与解决方法
2020/08/19 HTML / CSS
Linux内核的同步机制是什么?主要有哪几种内核锁
2016/07/11 面试题
UML设计模式笔试题
2014/06/07 面试题
捐书倡议书
2014/08/29 职场文书
汤姆索亚历险记读书笔记
2015/06/29 职场文书
小学生读书笔记
2015/07/01 职场文书
2016全国“质量月”活动标语口号
2015/12/26 职场文书
Python中tkinter的用户登录管理的实现
2021/04/22 Python
Html5生成验证码的示例代码
2021/05/10 Javascript
Python OpenCV超详细讲解读取图像视频和网络摄像头
2022/04/02 Python