如何基于Python和Flask编写Prometheus监控


Posted in Python onNovember 25, 2020

介绍

Prometheus 的基本原理是通过 HTTP 周期性抓取被监控组件的状态。

任意组件只要提供对应的 HTTP 接口并且符合 Prometheus 定义的数据格式,就可以接入 Prometheus 监控。

Prometheus Server 负责定时在目标上抓取 metrics(指标)数据并保存到本地存储。它采用了一种 Pull(拉)的方式获取数据,不仅降低客户端的复杂度,客户端只需要采集数据,无需了解服务端情况,也让服务端可以更加方便地水平扩展。

如果监控数据达到告警阈值,Prometheus Server 会通过 HTTP 将告警发送到告警模块 alertmanger,通过告警的抑制后触发邮件或者 Webhook。Prometheus 支持 PromQL 提供多维度数据模型和灵活的查询,通过监控指标关联多个 tag 的方式,将监控数据进行任意维度的组合以及聚合。

在python中实现服务器端,对外提供接口。在Prometheus中配置请求网址,Prometheus会定期向该网址发起申请获取你想要返回的数据。

另外Prometheus提供4种类型Metrics:Counter, Gauge, Summary和Histogram。

准备

pip install flask
pip install prometheus_client

Counter

Counter可以增长,并且在程序重启的时候会被重设为0,常被用于访问量,任务个数,总处理时间,错误个数等只增不减的指标。

定义它需要2个参数,第一个是metrics的名字,第二个是metrics的描述信息:

c = Counter('c1', 'A counter')

counter只能增加,所以只有一个方法:

def inc(self, amount=1):
    '''Increment counter by the given amount.'''
    if amount < 0:
      raise ValueError('Counters can only be incremented by non-negative amounts.')
    self._value.inc(amount)

测试示例:

import prometheus_client
from prometheus_client import Counter
from prometheus_client.core import CollectorRegistry

from flask import Response, Flask

app = Flask(__name__)
requests_total = Counter('c1','A counter')

@app.route("/api/metrics/count/")
def requests_count():
 requests_total.inc(1)
 # requests_total.inc(2)
 return Response(prometheus_client.generate_latest(requests_total),mimetype="text/plain")


if __name__ == "__main__":
 app.run(host="127.0.0.1",port=8081)

访问http://127.0.0.1:8081/api/metrics/count/:

# HELP c1_total A counter
# TYPE c1_total counter
c1_total 1.0
# HELP c1_created A counter
# TYPE c1_created gauge
c1_created 1.6053265493727107e+09

HELP是c1的注释说明,创建Counter定义的。

TYPE是c1的类型说明。

c1_total为我们定义的指标输出:你会发现多了后缀_total,这是因为OpenMetrics与Prometheus文本格式之间的兼容性,OpenMetrics需要_total后缀。

gauge

gauge可增可减,可以任意设置。

比如可以设置当前的CPU温度,内存使用量,磁盘、网络流量等等。

定义和counter基本一样:

from prometheus_client import Gauge
g = Gauge('my_inprogress_requests', 'Description of gauge')
g.inc()   # Increment by 1
g.dec(10)  # Decrement by given value
g.set(4.2)  # Set to a given value

方法:

def inc(self, amount=1):
   '''Increment gauge by the given amount.'''
   self._value.inc(amount)

def dec(self, amount=1):
   '''Decrement gauge by the given amount.'''
   self._value.inc(-amount)

 def set(self, value):
   '''Set gauge to the given value.'''
   self._value.set(float(value))

测试示例:

import random
import prometheus_client
from prometheus_client import Gauge
from prometheus_client.core import CollectorRegistry
from flask import Response, Flask


app = Flask(__name__)
random_value = Gauge("g1", 'A gauge')
@app.route("/api/metrics/gauge/")
def r_value():
  random_value.set(random.randint(0, 10))
  return Response(prometheus_client.generate_latest(random_value),
          mimetype="text/plain")

if __name__ == "__main__":
 app.run(host="127.0.0.1",port=8081)

访问http://127.0.0.1:8081/api/metrics/gauge/

# HELP g1 A gauge
# TYPE g1 gauge
g1 5.0

LABELS的用法

使用labels来区分metric的特征,一个指标可以有其中一个label,也可以有多个label。

from prometheus_client import Counter
c = Counter('requests_total', 'HTTP requests total', ['method', 'clientip'])
c.labels('get', '127.0.0.1').inc()
c.labels('post', '192.168.0.1').inc(3)
c.labels(method="get", clientip="192.168.0.1").inc()
import random
import prometheus_client
from prometheus_client import Gauge
from flask import Response, Flask


app = Flask(__name__)
c = Gauge("c1", 'A counter',['method','clientip'])
@app.route("/api/metrics/counter/")
def r_value():
  c.labels(method='get',clientip='192.168.0.%d' % random.randint(1,10)).inc()
  return Response(prometheus_client.generate_latest(c),
          mimetype="text/plain")

if __name__ == "__main__":
 app.run(host="127.0.0.1",port=8081)

连续访问9次http://127.0.0.1:8081/api/metrics/counter/:

# HELP c1 A counter
# TYPE c1 gauge
c1{clientip="192.168.0.7",method="get"} 2.0
c1{clientip="192.168.0.1",method="get"} 1.0
c1{clientip="192.168.0.8",method="get"} 1.0
c1{clientip="192.168.0.5",method="get"} 2.0
c1{clientip="192.168.0.4",method="get"} 1.0
c1{clientip="192.168.0.10",method="get"} 1.0
c1{clientip="192.168.0.2",method="get"} 1.0

histogram

这种主要用来统计百分位的,什么是百分位?英文叫做quantiles。

比如你有100条访问请求的耗时时间,把它们从小到大排序,第90个时间是200ms,那么我们可以说90%的请求都小于200ms,这也叫做”90分位是200ms”,能够反映出服务的基本质量。当然,也许第91个时间是2000ms,这就没法说了。

实际情况是,我们每天访问量至少几个亿,不可能把所有访问数据都存起来,然后排序找到90分位的时间是多少。因此,类似这种问题都采用了一些估算的算法来处理,不需要把所有数据都存下来,这里面数学原理比较高端,我们就直接看看prometheus的用法好了。

首先定义histogram:

h = Histogram('hh', 'A histogram', buckets=(-5, 0, 5))

第一个是metrics的名字,第二个是描述,第三个是分桶设置,重点说一下buckets。

这里(-5,0,5)实际划分成了几种桶:(无穷小,-5],(-5,0],(0,5],(5,无穷大)。

如果我们喂给它一个-8:

h.observe(8)

那么metrics会这样输出:

# HELP hh A histogram
# TYPE hh histogram
hh_bucket{le="-5.0"} 0.0
hh_bucket{le="0.0"} 0.0
hh_bucket{le="5.0"} 0.0
hh_bucket{le="+Inf"} 1.0
hh_count 1.0
hh_sum 8.0

hh_sum记录了observe的总和,count记录了observe的次数,bucket就是各种桶了,le表示<=某值。

可见,值8<=无穷大,所以只有最后一个桶计数了1次(注意,桶只是计数,bucket作用相当于统计样本在不同区间的出现次数)。

bucket的划分需要我们根据数据的分布拍脑袋指定,合理的划分可以让promql估算百分位的时候更准确,我们使用histogram的时候只需要知道先分好桶,再不断的打点即可,最终百分位的计算可以基于histogram的原始数据完成。

测试示例:

import random
import prometheus_client
from prometheus_client import Histogram
from flask import Response, Flask
app = Flask(__name__)
h = Histogram("h1", 'A Histogram', buckets=(-5, 0, 5))
@app.route("/api/metrics/histogram/")
def r_value():
  h.observe(random.randint(-5, 5))
  return Response(prometheus_client.generate_latest(h),
          mimetype="text/plain")

if __name__ == "__main__":
 app.run(host="127.0.0.1",port=8081)

连续访问http://127.0.0.1:8081/api/metrics/histogram/:

# HELP h1 A Histogram
# TYPE h1 histogram
h1_bucket{le="-5.0"} 0.0
h1_bucket{le="0.0"} 5.0
h1_bucket{le="5.0"} 10.0
h1_bucket{le="+Inf"} 10.0
h1_count 10.0
# HELP h1_created A Histogram
# TYPE h1_created gauge
h1_created 1.6053319432993534e+09

summary

python客户端没有完整实现summary算法,这里不介绍。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Linux下用Python脚本监控目录变化代码分享
May 21 Python
Python修改MP3文件的方法
Jun 15 Python
python设计模式大全
Jun 27 Python
Python利用正则表达式实现计算器算法思路解析
Apr 25 Python
python去除拼音声调字母,替换为字母的方法
Nov 28 Python
pyqt5 禁止窗口最大化和禁止窗口拉伸的方法
Jun 18 Python
python多线程+代理池爬取天天基金网、股票数据过程解析
Aug 13 Python
python logging日志模块原理及操作解析
Oct 12 Python
基于Python检测动态物体颜色过程解析
Dec 04 Python
Python3 实现爬取网站下所有URL方式
Jan 16 Python
python将字典内容写入json文件的实例代码
Aug 12 Python
python中用ctypes模拟点击的实例讲解
Nov 26 Python
python3爬虫中多线程进行解锁操作实例
Nov 25 #Python
mac系统下安装pycharm、永久激活、中文汉化详细教程
Nov 24 #Python
python 基于wx实现音乐播放
Nov 24 #Python
Python WebSocket长连接心跳与短连接的示例
Nov 24 #Python
Python 利用Entrez库筛选下载PubMed文献摘要的示例
Nov 24 #Python
python实现企业微信定时发送文本消息的示例代码
Nov 24 #Python
python爬虫快速响应服务器的做法
Nov 24 #Python
You might like
php实现mysql备份恢复分卷处理的方法
2014/12/26 PHP
开启PHP的伪静态模式
2015/12/31 PHP
PHP设计模式之模板方法模式定义与用法详解
2018/04/02 PHP
Laravel5.7 Eloquent ORM快速入门详解
2019/04/12 PHP
超级有用的13个基于jQuery的内容滚动插件和教程
2011/07/31 Javascript
浅谈checkbox的一些操作(实战经验)
2013/11/20 Javascript
详细分析JavaScript函数定义
2015/07/16 Javascript
深入探讨javascript函数式编程
2015/10/11 Javascript
jquery淡入淡出效果简单实例
2016/01/14 Javascript
JavaScript快速切换繁体中文和简体中文的方法及网站支持简繁体切换的绝招
2016/03/07 Javascript
D3.js实现柱状图的方法详解
2016/09/21 Javascript
jstree的简单实例
2016/12/01 Javascript
JS实现超简单的汉字转拼音功能示例
2016/12/22 Javascript
详解基于Bootstrap+angular的一个豆瓣电影app
2017/06/26 Javascript
node.js + socket.io 实现点对点随机匹配聊天
2017/06/30 Javascript
vue webpack开发访问后台接口全局配置的方法
2018/09/18 Javascript
微信小程序如何获取手机验证码
2018/11/04 Javascript
react native 原生模块桥接的简单说明小结
2019/02/26 Javascript
Python中统计函数运行耗时的方法
2015/05/05 Python
分析用Python脚本关闭文件操作的机制
2015/06/28 Python
windows 10下安装搭建django1.10.3和Apache2.4的方法
2017/04/05 Python
python实现转盘效果 python实现轮盘抽奖游戏
2019/01/22 Python
python交易记录整合交易类详解
2019/07/03 Python
python scipy卷积运算的实现方法
2019/09/16 Python
Python json读写方式和字典相互转化
2020/04/18 Python
浅谈Selenium 控制浏览器的常用方法
2020/12/04 Python
检测用户浏览器是否支持CSS3的方法
2009/08/29 HTML / CSS
The Athlete’s Foot新西兰:新西兰最大的运动鞋零售商
2019/12/23 全球购物
新西兰最大的连锁超市:Countdown
2020/06/04 全球购物
如何安装ruby on rails
2014/02/09 面试题
《小池塘》教学反思
2014/02/28 职场文书
销售竞赛活动方案
2014/08/23 职场文书
个人融资协议书范本两则
2014/10/15 职场文书
个性与发展自我评价
2015/03/06 职场文书
离婚答辩状怎么写
2015/05/22 职场文书
redis实现的四种常见限流策略
2021/06/18 Redis