如何基于Python和Flask编写Prometheus监控


Posted in Python onNovember 25, 2020

介绍

Prometheus 的基本原理是通过 HTTP 周期性抓取被监控组件的状态。

任意组件只要提供对应的 HTTP 接口并且符合 Prometheus 定义的数据格式,就可以接入 Prometheus 监控。

Prometheus Server 负责定时在目标上抓取 metrics(指标)数据并保存到本地存储。它采用了一种 Pull(拉)的方式获取数据,不仅降低客户端的复杂度,客户端只需要采集数据,无需了解服务端情况,也让服务端可以更加方便地水平扩展。

如果监控数据达到告警阈值,Prometheus Server 会通过 HTTP 将告警发送到告警模块 alertmanger,通过告警的抑制后触发邮件或者 Webhook。Prometheus 支持 PromQL 提供多维度数据模型和灵活的查询,通过监控指标关联多个 tag 的方式,将监控数据进行任意维度的组合以及聚合。

在python中实现服务器端,对外提供接口。在Prometheus中配置请求网址,Prometheus会定期向该网址发起申请获取你想要返回的数据。

另外Prometheus提供4种类型Metrics:Counter, Gauge, Summary和Histogram。

准备

pip install flask
pip install prometheus_client

Counter

Counter可以增长,并且在程序重启的时候会被重设为0,常被用于访问量,任务个数,总处理时间,错误个数等只增不减的指标。

定义它需要2个参数,第一个是metrics的名字,第二个是metrics的描述信息:

c = Counter('c1', 'A counter')

counter只能增加,所以只有一个方法:

def inc(self, amount=1):
    '''Increment counter by the given amount.'''
    if amount < 0:
      raise ValueError('Counters can only be incremented by non-negative amounts.')
    self._value.inc(amount)

测试示例:

import prometheus_client
from prometheus_client import Counter
from prometheus_client.core import CollectorRegistry

from flask import Response, Flask

app = Flask(__name__)
requests_total = Counter('c1','A counter')

@app.route("/api/metrics/count/")
def requests_count():
 requests_total.inc(1)
 # requests_total.inc(2)
 return Response(prometheus_client.generate_latest(requests_total),mimetype="text/plain")


if __name__ == "__main__":
 app.run(host="127.0.0.1",port=8081)

访问http://127.0.0.1:8081/api/metrics/count/:

# HELP c1_total A counter
# TYPE c1_total counter
c1_total 1.0
# HELP c1_created A counter
# TYPE c1_created gauge
c1_created 1.6053265493727107e+09

HELP是c1的注释说明,创建Counter定义的。

TYPE是c1的类型说明。

c1_total为我们定义的指标输出:你会发现多了后缀_total,这是因为OpenMetrics与Prometheus文本格式之间的兼容性,OpenMetrics需要_total后缀。

gauge

gauge可增可减,可以任意设置。

比如可以设置当前的CPU温度,内存使用量,磁盘、网络流量等等。

定义和counter基本一样:

from prometheus_client import Gauge
g = Gauge('my_inprogress_requests', 'Description of gauge')
g.inc()   # Increment by 1
g.dec(10)  # Decrement by given value
g.set(4.2)  # Set to a given value

方法:

def inc(self, amount=1):
   '''Increment gauge by the given amount.'''
   self._value.inc(amount)

def dec(self, amount=1):
   '''Decrement gauge by the given amount.'''
   self._value.inc(-amount)

 def set(self, value):
   '''Set gauge to the given value.'''
   self._value.set(float(value))

测试示例:

import random
import prometheus_client
from prometheus_client import Gauge
from prometheus_client.core import CollectorRegistry
from flask import Response, Flask


app = Flask(__name__)
random_value = Gauge("g1", 'A gauge')
@app.route("/api/metrics/gauge/")
def r_value():
  random_value.set(random.randint(0, 10))
  return Response(prometheus_client.generate_latest(random_value),
          mimetype="text/plain")

if __name__ == "__main__":
 app.run(host="127.0.0.1",port=8081)

访问http://127.0.0.1:8081/api/metrics/gauge/

# HELP g1 A gauge
# TYPE g1 gauge
g1 5.0

LABELS的用法

使用labels来区分metric的特征,一个指标可以有其中一个label,也可以有多个label。

from prometheus_client import Counter
c = Counter('requests_total', 'HTTP requests total', ['method', 'clientip'])
c.labels('get', '127.0.0.1').inc()
c.labels('post', '192.168.0.1').inc(3)
c.labels(method="get", clientip="192.168.0.1").inc()
import random
import prometheus_client
from prometheus_client import Gauge
from flask import Response, Flask


app = Flask(__name__)
c = Gauge("c1", 'A counter',['method','clientip'])
@app.route("/api/metrics/counter/")
def r_value():
  c.labels(method='get',clientip='192.168.0.%d' % random.randint(1,10)).inc()
  return Response(prometheus_client.generate_latest(c),
          mimetype="text/plain")

if __name__ == "__main__":
 app.run(host="127.0.0.1",port=8081)

连续访问9次http://127.0.0.1:8081/api/metrics/counter/:

# HELP c1 A counter
# TYPE c1 gauge
c1{clientip="192.168.0.7",method="get"} 2.0
c1{clientip="192.168.0.1",method="get"} 1.0
c1{clientip="192.168.0.8",method="get"} 1.0
c1{clientip="192.168.0.5",method="get"} 2.0
c1{clientip="192.168.0.4",method="get"} 1.0
c1{clientip="192.168.0.10",method="get"} 1.0
c1{clientip="192.168.0.2",method="get"} 1.0

histogram

这种主要用来统计百分位的,什么是百分位?英文叫做quantiles。

比如你有100条访问请求的耗时时间,把它们从小到大排序,第90个时间是200ms,那么我们可以说90%的请求都小于200ms,这也叫做”90分位是200ms”,能够反映出服务的基本质量。当然,也许第91个时间是2000ms,这就没法说了。

实际情况是,我们每天访问量至少几个亿,不可能把所有访问数据都存起来,然后排序找到90分位的时间是多少。因此,类似这种问题都采用了一些估算的算法来处理,不需要把所有数据都存下来,这里面数学原理比较高端,我们就直接看看prometheus的用法好了。

首先定义histogram:

h = Histogram('hh', 'A histogram', buckets=(-5, 0, 5))

第一个是metrics的名字,第二个是描述,第三个是分桶设置,重点说一下buckets。

这里(-5,0,5)实际划分成了几种桶:(无穷小,-5],(-5,0],(0,5],(5,无穷大)。

如果我们喂给它一个-8:

h.observe(8)

那么metrics会这样输出:

# HELP hh A histogram
# TYPE hh histogram
hh_bucket{le="-5.0"} 0.0
hh_bucket{le="0.0"} 0.0
hh_bucket{le="5.0"} 0.0
hh_bucket{le="+Inf"} 1.0
hh_count 1.0
hh_sum 8.0

hh_sum记录了observe的总和,count记录了observe的次数,bucket就是各种桶了,le表示<=某值。

可见,值8<=无穷大,所以只有最后一个桶计数了1次(注意,桶只是计数,bucket作用相当于统计样本在不同区间的出现次数)。

bucket的划分需要我们根据数据的分布拍脑袋指定,合理的划分可以让promql估算百分位的时候更准确,我们使用histogram的时候只需要知道先分好桶,再不断的打点即可,最终百分位的计算可以基于histogram的原始数据完成。

测试示例:

import random
import prometheus_client
from prometheus_client import Histogram
from flask import Response, Flask
app = Flask(__name__)
h = Histogram("h1", 'A Histogram', buckets=(-5, 0, 5))
@app.route("/api/metrics/histogram/")
def r_value():
  h.observe(random.randint(-5, 5))
  return Response(prometheus_client.generate_latest(h),
          mimetype="text/plain")

if __name__ == "__main__":
 app.run(host="127.0.0.1",port=8081)

连续访问http://127.0.0.1:8081/api/metrics/histogram/:

# HELP h1 A Histogram
# TYPE h1 histogram
h1_bucket{le="-5.0"} 0.0
h1_bucket{le="0.0"} 5.0
h1_bucket{le="5.0"} 10.0
h1_bucket{le="+Inf"} 10.0
h1_count 10.0
# HELP h1_created A Histogram
# TYPE h1_created gauge
h1_created 1.6053319432993534e+09

summary

python客户端没有完整实现summary算法,这里不介绍。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
一个月入门Python爬虫学习,轻松爬取大规模数据
Jan 03 Python
对python数据切割归并算法的实例讲解
Dec 12 Python
利用python numpy+matplotlib绘制股票k线图的方法
Jun 26 Python
Django文件存储 默认存储系统解析
Aug 02 Python
更新pip3与pyttsx3文字语音转换的实现方法
Aug 08 Python
查看Python依赖包及其版本号信息的方法
Aug 13 Python
Python 限定函数参数的类型及默认值方式
Dec 24 Python
matplotlib 曲线图 和 折线图 plt.plot()实例
Apr 17 Python
爬虫代理的cookie如何生成运行
Sep 22 Python
python利用xlsxwriter模块 操作 Excel
Oct 14 Python
python 实现一个图形界面的汇率计算器
Nov 09 Python
python中pycryto实现数据加密
Apr 29 Python
python3爬虫中多线程进行解锁操作实例
Nov 25 #Python
mac系统下安装pycharm、永久激活、中文汉化详细教程
Nov 24 #Python
python 基于wx实现音乐播放
Nov 24 #Python
Python WebSocket长连接心跳与短连接的示例
Nov 24 #Python
Python 利用Entrez库筛选下载PubMed文献摘要的示例
Nov 24 #Python
python实现企业微信定时发送文本消息的示例代码
Nov 24 #Python
python爬虫快速响应服务器的做法
Nov 24 #Python
You might like
队列在编程中的实际应用(php)
2010/09/04 PHP
用PHP即时捕捉PHP中的错误并发送email通知的实现代码
2013/01/19 PHP
Laravel框架表单验证详解
2014/09/04 PHP
laravel model 两表联查示例
2019/10/24 PHP
jquery 新浪网易的评论块制作
2010/07/01 Javascript
js下利用控制器载入对应脚本
2010/07/17 Javascript
html页面显示年月日时分秒和星期几的两种方式
2013/08/20 Javascript
YUI模块开发原理详解
2013/11/18 Javascript
纯js实现div内图片自适应大小(已测试,兼容火狐)
2014/06/16 Javascript
jQuery实现的Div窗口震动效果实例
2015/08/07 Javascript
jQuery EasyUI Dialog拖不下来如何解决
2015/09/28 Javascript
浅谈JavaScript异步编程
2017/01/20 Javascript
JS日程管理插件FullCalendar简单实例
2017/02/07 Javascript
jquery实现下拉框左右选择功能
2017/02/21 Javascript
jQuery中clone()函数实现表单中增加和减少输入项
2017/05/13 jQuery
极简主义法编写JavaScript类
2017/11/02 Javascript
angular.js和vue.js中实现函数去抖示例(debounce)
2018/01/18 Javascript
React Form组件的实现封装杂谈
2018/05/07 Javascript
vue组件定义,全局、局部组件,配合模板及动态组件功能示例
2019/03/19 Javascript
微信小程序-API接口安全详解
2019/07/16 Javascript
JavaScript类的继承多种实现方法
2020/05/30 Javascript
vue接口请求加密实例
2020/08/11 Javascript
详解Node.JS模块 process
2020/08/31 Javascript
浅要分析Python程序与C程序的结合使用
2015/04/07 Python
Python获取暗黑破坏神3战网前1000命位玩家的英雄技能统计
2016/07/04 Python
python3中dict(字典)的使用方法示例
2017/03/22 Python
Python 单元测试(unittest)的使用小结
2018/11/14 Python
python实现月食效果实例代码
2019/06/18 Python
HTML5实时语音通话聊天MP3压缩传输3KB每秒
2019/08/28 HTML / CSS
2013英文求职信模板范文
2013/11/15 职场文书
初中同学聚会感言
2014/02/11 职场文书
社区矫正工作方案
2014/06/04 职场文书
战友聚会策划方案
2014/06/13 职场文书
新颖的化妆品活动方案
2014/08/21 职场文书
就业指导讲座心得体会
2016/01/15 职场文书
Python 解决空列表.append() 输出为None的问题
2021/05/23 Python