Python语言实现机器学习的K-近邻算法


Posted in Python onJune 11, 2015

写在前面

额、、、最近开始学习机器学习嘛,网上找到一本关于机器学习的书籍,名字叫做《机器学习实战》。很巧的是,这本书里的算法是用Python语言实现的,刚好之前我学过一些Python基础知识,所以这本书对于我来说,无疑是雪中送炭啊。接下来,我还是给大家讲讲实际的东西吧。

什么是K-近邻算法?

简单的说,K-近邻算法就是采用测量不同特征值之间的距离方法来进行分类。它的工作原理是:存在一个样本数据集合,也称作训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分类的对应关系,输入没有标签的新数据之后,将新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取出样本集中特征最相似数据的分类标签。一般来说,我们只选择样本数据集中前k个最相似的数据,这就是K-近邻算法名称的由来。

提问:亲,你造K-近邻算法是属于监督学习还是无监督学习呢?

使用Python导入数据

从K-近邻算法的工作原理中我们可以看出,要想实施这个算法来进行数据分类,我们手头上得需要样本数据,没有样本数据怎么建立分类函数呢。所以,我们第一步就是导入样本数据集合。

建立名为kNN.py的模块,写入代码:

from numpy import *
 import operator
 
 def createDataSet():
   group = array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])
   labels = ['A','A','B','B']
   return group, labels

代码中,我们需要导入Python的两个模块:科学计算包NumPy和运算符模块。NumPy函数库是Python开发环境的一个独立模块,大多数Python版本里没有默认安装NumPy函数库,因此这里我们需要单独安装这个模块。

下载地址:http://sourceforge.net/projects/numpy/files/

Python语言实现机器学习的K-近邻算法

有很多的版本,这里我选择的是numpy-1.7.0-win32-superpack-python2.7.exe。

实现K-近邻算法

K-近邻算法的具体思想如下:

(1)计算已知类别数据集中的点与当前点之间的距离

(2)按照距离递增次序排序

(3)选取与当前点距离最小的k个点

(4)确定前k个点所在类别的出现频率

(5)返回前k个点中出现频率最高的类别作为当前点的预测分类

Python语言实现K-近邻算法的代码如下:

# coding : utf-8
 from numpy import *
 import operator 
 import kNN
 group, labels = kNN.createDataSet()
 def classify(inX, dataSet, labels, k):
   dataSetSize = dataSet.shape[0] 
   diffMat = tile(inX, (dataSetSize,1)) - dataSet
   sqDiffMat = diffMat**2
   sqDistances = sqDiffMat.sum(axis=1)
   distances = sqDistances**0.5
   sortedDistances = distances.argsort()
   classCount = {}
   for i in range(k):
     numOflabel = labels[sortedDistances[i]]
     classCount[numOflabel] = classCount.get(numOflabel,0) + 1
   sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1),reverse=True)
   return sortedClassCount[0][0]
 my = classify([0,0], group, labels, 3)
 print my

运算结果如下:

Python语言实现机器学习的K-近邻算法

 输出结果是B:说明我们新的数据([0,0])是属于B类。

代码详解

相信有很多朋友们对上面这个代码有很多不理解的地方,接下来,我重点讲解几个此函数的关键点,以方便读者们和我自己回顾一下这个算法代码。

classify函数的参数:

inX:用于分类的输入向量
dataSet:训练样本集合
labels:标签向量
k:K-近邻算法中的k
shape:是array的属性,描述一个多维数组的维度

tile(inX, (dataSetSize,1)):把inX二维数组化,dataSetSize表示生成数组后的行数,1表示列的倍数。整个这一行代码表示前一个二维数组矩阵的每一个元素减去后一个数组对应的元素值,这样就实现了矩阵之间的减法,简单方便得不让你佩服不行!

axis=1:参数等于1的时候,表示矩阵中行之间的数的求和,等于0的时候表示列之间数的求和。

argsort():对一个数组进行非降序排序

classCount.get(numOflabel,0) + 1:这一行代码不得不说的确很精美啊。get():该方法是访问字典项的方法,即访问下标键为numOflabel的项,如果没有这一项,那么初始值为0。然后把这一项的值加1。所以Python中实现这样的操作就只需要一行代码,实在是很简洁高效。

后话

K-近邻算法(KNN)原理以及代码实现差不多就这样了,接下来的任务就是更加熟悉它,争取达到裸敲的地步。

以上所述上就是本文的全部内容了,希望大家能够喜欢。

Python 相关文章推荐
Python中用memcached来减少数据库查询次数的教程
Apr 07 Python
Odoo中如何生成唯一不重复的序列号详解
Feb 10 Python
python实现图片筛选程序
Oct 24 Python
Python实现DDos攻击实例详解
Feb 02 Python
python把ipynb文件转换成pdf文件过程详解
Jul 09 Python
如何用Python破解wifi密码过程详解
Jul 12 Python
python如何使用Redis构建分布式锁
Jan 16 Python
python可视化text()函数使用详解
Feb 11 Python
python opencv 检测移动物体并截图保存实例
Mar 10 Python
Python+Appium新手教程
Apr 17 Python
Pytorch DataLoader shuffle验证方式
Jun 02 Python
Python+腾讯云服务器实现每日自动健康打卡
Dec 06 Python
在Linux下使用Python的matplotlib绘制数据图的教程
Jun 11 #Python
python中的代码编码格式转换问题
Jun 10 #Python
python实现数独算法实例
Jun 09 #Python
python中的全局变量用法分析
Jun 09 #Python
python简单实现计算过期时间的方法
Jun 09 #Python
Python扫描IP段查看指定端口是否开放的方法
Jun 09 #Python
Python实现数据库编程方法详解
Jun 09 #Python
You might like
PHP UTF8编码内的繁简转换类
2009/07/20 PHP
php object转数组示例
2014/01/15 PHP
JSON两种结构之对象和数组的理解
2016/07/19 PHP
Thinkphp通过一个入口文件如何区分移动端和PC端
2017/04/18 PHP
浅谈php://filter的妙用
2019/03/05 PHP
Laravel 修改验证异常的响应格式实例代码详解
2020/05/25 PHP
js技巧--转义符"\"的妙用
2007/01/09 Javascript
newxtree.js代码
2007/03/13 Javascript
JS实现文字链接感应鼠标淡入淡出改变颜色的方法
2015/02/26 Javascript
学习JavaScript设计模式(多态)
2015/11/25 Javascript
JS组件Bootstrap导航条使用方法详解
2016/04/29 Javascript
Javascript基础教程之比较null和undefined值
2016/05/16 Javascript
jQuery基础知识点总结(DOM操作)
2016/06/01 Javascript
JavaScript模拟实现封装的三种方式及写法区别
2017/10/27 Javascript
详解Vue文档中几个易忽视部分的剖析
2018/03/24 Javascript
JavaScript闭包相关知识解析
2019/10/19 Javascript
浅析vue cli3 封装Svgicon组件正确姿势(推荐)
2020/04/27 Javascript
vue动态设置页面title的方法实例
2020/08/23 Javascript
vue 授权获取微信openId操作
2020/11/13 Javascript
[02:44]重置世界,颠覆未来——DOTA2 7.23版本震撼上线
2019/12/01 DOTA
python自动化工具日志查询分析脚本代码实现
2013/11/26 Python
pytorch 预训练层的使用方法
2019/08/20 Python
python框架flask入门之路由及简单实现方法
2020/06/07 Python
python实现KNN近邻算法
2020/12/30 Python
使用CSS3美化HTML表单的技巧演示
2016/05/17 HTML / CSS
Perricone MD裴礼康美国官网:抗衰老护肤品
2016/09/26 全球购物
华为慧通笔试题
2016/04/22 面试题
什么是事务?事务有哪些性质?
2012/03/11 面试题
公务员转正考察材料
2014/02/07 职场文书
镇班子对照检查材料思想汇报
2014/09/24 职场文书
2015年前台接待工作总结
2015/05/04 职场文书
教师专业技术工作总结2015
2015/05/13 职场文书
2019年鼓励无偿献血倡议书
2019/09/17 职场文书
简单介绍 http请求响应参数、无连接无状态、MIME、状态码、端口、telnet、curl
2021/03/31 HTML / CSS
Mysql 如何批量插入数据
2021/04/06 MySQL
Grafana可视化监控系统结合SpringBoot使用
2022/04/19 Redis