OpenCV-Python 实现两张图片自动拼接成全景图


Posted in Python onJune 11, 2021

背景介绍

图片的全景拼接如今已不再稀奇,现在的智能摄像机和手机摄像头基本都带有图片自动全景拼接的功能,但是一般都会要求拍摄者保持设备的平稳以及单方向的移动取景以实现较好的拼接结果。这是因为拼接的图片之间必须要有相似的区域以保证拼接结果的准确性和完整性。本文主要简单描述如何用 Python 和 OpenCV 库实现两张图片的自动拼合,首先简单介绍一下两张图片拼接的原理。

基本原理

要实现两张图片的简单拼接,其实只需找出两张图片中相似的点 (至少四个,因为 homography 矩阵的计算需要至少四个点), 计算一张图片可以变换到另一张图片的变换矩阵 (homography 单应性矩阵),用这个矩阵把那张图片变换后放到另一张图片相应的位置 ( 就是相当于把两张图片中定好的四个相似的点?重合在一起)。如此,就可以实现简单的全景拼接。当然,因为拼合之后图片会重叠在一起,所以需要重新计算图片重叠部分的像素值,否则结果会很难看。所以总结起来其实就两个步骤:

1. 找两张图片中相似的点,计算变换矩阵

2. 变换一张图片放到另一张图片合适的位置,并计算重叠区域新的像素值 (这里就是图片融合所需要采取的策略)

具体实现

寻找相似点

当然,我们可以手动的寻找相似的点,但是这样比较麻烦。因为相似点越多或者相似点对应的位置越准确,所得的结果就越好,但是人的肉眼所找的位置总是有误差的,而且找出很多的点也不是一件容易的事。所以就有聪明的人设计了自动寻找相似点的算法,这里我们就用了 SIFT 算法,而 OpenCV 也给我们提供 SIFT 算法的接口,所以我们就不需要自己费力去实现了。如下是两张测试图片的原图和找出相似点后的图片。

OpenCV-Python 实现两张图片自动拼接成全景图OpenCV-Python 实现两张图片自动拼接成全景图

OpenCV-Python 实现两张图片自动拼接成全景图

其中红色的点是 SIFT 算法找出的相似点,而绿色的线表示的是在所有找出的相似的点中所筛选出的可信度更高的相似的点。因为算法找出的相似点并不一定是百分百正确的。然后就可以根据这些筛选出的相似点计算变换矩阵,当然 OpenCV 也提供了相应的接口方便我们的计算,而具体的代码实现也可以在 OpenCV 的 Python tutorial 中找到 [1]

图片拼接

计算出变换矩阵后,接下来就是第二步,用计算出的变换矩阵对其中一张图做变换,然后把变换的图片与另一张图片重叠在一起,并重新计算重叠区域新的像素值。对于计算重叠区域的像素值,其实可以有多种方法去实现一个好的融合效果,这里就用最简单粗暴的但效果也不错的方式。直白来说就是实现一个图像的线性渐变,对于重叠的区域,靠近左边的部分,让左边图像内容显示的多一些,靠近右边的部分,让右边图像的内容显示的多一些。用公式表示就是,假设 alpha 表示像素点横坐标到左右重叠区域边界横坐标的距离,新的像素值就为 newpixel = 左图像素值 × (1 - alpha) + 右图像素值 × alpha 。这样就可以实现一个简单的融合效果,如果想实现更复杂或更好的效果,可以去搜索和尝试一下 multi-band 融合,这里就不过多赘述了。最后附上实现的结果和代码,可供参考。

OpenCV-Python 实现两张图片自动拼接成全景图

Python 代码如下:

import numpy as np
import cv2 as cv
from matplotlib import pyplot as plt

if __name__ == '__main__':
    top, bot, left, right = 100, 100, 0, 500
    img1 = cv.imread('test1.jpg')
    img2 = cv.imread('test2.jpg')
    srcImg = cv.copyMakeBorder(img1, top, bot, left, right, cv.BORDER_CONSTANT, value=(0, 0, 0))
    testImg = cv.copyMakeBorder(img2, top, bot, left, right, cv.BORDER_CONSTANT, value=(0, 0, 0))
    img1gray = cv.cvtColor(srcImg, cv.COLOR_BGR2GRAY)
    img2gray = cv.cvtColor(testImg, cv.COLOR_BGR2GRAY)
    sift = cv.xfeatures2d_SIFT().create()
    # find the keypoints and descriptors with SIFT
    kp1, des1 = sift.detectAndCompute(img1gray, None)
    kp2, des2 = sift.detectAndCompute(img2gray, None)
    # FLANN parameters
    FLANN_INDEX_KDTREE = 1
    index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5)
    search_params = dict(checks=50)
    flann = cv.FlannBasedMatcher(index_params, search_params)
    matches = flann.knnMatch(des1, des2, k=2)

    # Need to draw only good matches, so create a mask
    matchesMask = [[0, 0] for i in range(len(matches))]

    good = []
    pts1 = []
    pts2 = []
    # ratio test as per Lowe's paper
    for i, (m, n) in enumerate(matches):
        if m.distance < 0.7*n.distance:
            good.append(m)
            pts2.append(kp2[m.trainIdx].pt)
            pts1.append(kp1[m.queryIdx].pt)
            matchesMask[i] = [1, 0]

    draw_params = dict(matchColor=(0, 255, 0),
                       singlePointColor=(255, 0, 0),
                       matchesMask=matchesMask,
                       flags=0)
    img3 = cv.drawMatchesKnn(img1gray, kp1, img2gray, kp2, matches, None, **draw_params)
    plt.imshow(img3, ), plt.show()

    rows, cols = srcImg.shape[:2]
    MIN_MATCH_COUNT = 10
    if len(good) > MIN_MATCH_COUNT:
        src_pts = np.float32([kp1[m.queryIdx].pt for m in good]).reshape(-1, 1, 2)
        dst_pts = np.float32([kp2[m.trainIdx].pt for m in good]).reshape(-1, 1, 2)
        M, mask = cv.findHomography(src_pts, dst_pts, cv.RANSAC, 5.0)
        warpImg = cv.warpPerspective(testImg, np.array(M), (testImg.shape[1], testImg.shape[0]), flags=cv.WARP_INVERSE_MAP)

        for col in range(0, cols):
            if srcImg[:, col].any() and warpImg[:, col].any():
                left = col
                break
        for col in range(cols-1, 0, -1):
            if srcImg[:, col].any() and warpImg[:, col].any():
                right = col
                break

        res = np.zeros([rows, cols, 3], np.uint8)
        for row in range(0, rows):
            for col in range(0, cols):
                if not srcImg[row, col].any():
                    res[row, col] = warpImg[row, col]
                elif not warpImg[row, col].any():
                    res[row, col] = srcImg[row, col]
                else:
                    srcImgLen = float(abs(col - left))
                    testImgLen = float(abs(col - right))
                    alpha = srcImgLen / (srcImgLen + testImgLen)
                    res[row, col] = np.clip(srcImg[row, col] * (1-alpha) + warpImg[row, col] * alpha, 0, 255)

        # opencv is bgr, matplotlib is rgb
        res = cv.cvtColor(res, cv.COLOR_BGR2RGB)
        # show the result
        plt.figure()
        plt.imshow(res)
        plt.show()
    else:
        print("Not enough matches are found - {}/{}".format(len(good), MIN_MATCH_COUNT))
        matchesMask = None

Reference

[1] OpenCV tutorial: https://docs.opencv.org/3.4.1/d1/de0/tutorial_py_feature_homography.html

到此这篇关于OpenCV-Python 实现两张图片自动拼接成全景图的文章就介绍到这了,更多相关OpenCV 图片自动拼接成全景图内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
Python深入学习之上下文管理器
Aug 31 Python
wxPython中listbox用法实例详解
Jun 01 Python
python基础教程之匿名函数lambda
Jan 17 Python
Python数据结构之栈、队列的实现代码分享
Dec 04 Python
Django实现组合搜索的方法示例
Jan 23 Python
Python + selenium自动化环境搭建的完整步骤
May 19 Python
修改默认的pip版本为对应python2.7的方法
Nov 06 Python
python中while和for的区别总结
Jun 28 Python
python数据爬下来保存的位置
Feb 17 Python
pycharm部署、配置anaconda环境的教程
Mar 24 Python
python 实现学生信息管理系统的示例
Nov 28 Python
python mongo 向数据中的数组类型新增数据操作
Dec 05 Python
matplotlib如何设置坐标轴刻度的个数及标签的方法总结
PyQt5结合QtDesigner实现文本框读写操作
Python中seaborn库之countplot的数据可视化使用
Python爬取某拍短视频
anaconda python3.8安装后降级
OpenCV-Python实现人脸美白算法的实例
Matplotlib可视化之添加让统计图变得简单易懂的注释
You might like
一些关于PHP的知识
2006/11/17 PHP
解析PHP高效率写法(详解原因)
2013/06/20 PHP
解析php如何将日志写进syslog
2013/06/28 PHP
PHP实现简单汉字验证码
2015/07/28 PHP
SESSION存放在数据库用法实例
2015/08/08 PHP
PHP全功能无变形图片裁剪操作类与用法示例
2017/01/10 PHP
jquery URL参数判断,确定菜单样式
2010/05/31 Javascript
JavaScript在XHTML中的用法详解
2013/04/11 Javascript
jQuery实现鼠标划过展示大图的方法
2015/03/09 Javascript
js代码延迟一定时间后执行一个函数的实例
2017/02/15 Javascript
bootstrapValidator 重新启用提交按钮的方法
2017/02/20 Javascript
原生JavaScript实现的简单省市县三级联动功能示例
2017/05/27 Javascript
使用jQuery实现鼠标点击左右按钮滑动切换
2017/08/04 jQuery
node crawler如何添加promise支持
2020/02/01 Javascript
基于JS实现快速读取TXT文件
2020/08/25 Javascript
跟老齐学Python之一个免费的实验室
2014/09/14 Python
Python argv用法详解
2016/01/08 Python
python实现多线程抓取知乎用户
2016/12/12 Python
python 求1-100之间的奇数或者偶数之和的实例
2019/06/11 Python
python3.5 cv2 获取视频特定帧生成jpg图片
2019/08/28 Python
Django 框架模型操作入门教程
2019/11/05 Python
pygame编写音乐播放器的实现代码示例
2019/11/19 Python
Python3加密解密库Crypto的RSA加解密和签名/验签实现方法实例
2020/02/11 Python
Python爬取网页信息的示例
2020/09/24 Python
美国和加拿大房车出售在线分类广告:RVT.com
2018/04/23 全球购物
军训的自我鉴定
2013/12/10 职场文书
体育教师个人的自我评价
2014/02/16 职场文书
开学典礼决心书
2014/03/11 职场文书
岗位职责说明书
2014/05/07 职场文书
优秀家长事迹材料
2014/05/17 职场文书
抗洪救灾标语
2014/10/08 职场文书
2015年三年级班主任工作总结
2015/05/21 职场文书
先进基层党组织主要事迹材料
2015/11/03 职场文书
python实现进度条的多种实现
2021/04/29 Python
无线电通信名词解释
2022/02/18 无线电
MySQL中优化SQL语句的方法(show status、explain分析服务器状态信息)
2022/04/09 MySQL