python周期任务调度工具Schedule使用详解


Posted in Python onNovember 23, 2021

如果你想周期性地执行某个 Python 脚本,最出名的选择应该是 Crontab 脚本,但是 Crontab 具有以下缺点:

1.不方便执行秒级任务。

2.当需要执行的定时任务有上百个的时候,Crontab 的管理就会特别不方便。

还有一个选择是 Celery,但是 Celery 的配置比较麻烦,如果你只是需要一个轻量级的调度工具,Celery 不会是一个好选择。

在你想要使用一个轻量级的任务调度工具,而且希望它尽量简单、容易使用、不需要外部依赖,最好能够容纳 Crontab 的所有基本功能,那么 Schedule 模块是你的不二之选。

使用它来调度任务可能只需要几行代码,感受一下:

import schedule
import time
def job():
    print("I'm working...")
schedule.every(10).minutes.do(job)
while True:
    schedule.run_pending()
    time.sleep(1)

上面的代码表示每10分钟执行一次 job 函数,非常简单方便。你只需要引入 schedule 模块,通过调用 scedule.every(时间数).时间类型.do(job) 发布周期任务。

发布后的周期任务需要用 run_pending 函数来检测是否执行,因此需要一个 While 循环不断地轮询这个函数。

下面具体讲讲Schedule模块的安装和初级、进阶使用方法。

1.准备

开始之前,你要确保Python和pip已经成功安装在电脑上,请选择以下任一种方式输入命令安装依赖:

Windows 环境 打开 Cmd (开始-运行-CMD)。

MacOS 环境 打开 Terminal (command+空格输入Terminal)。

如果你用的是 VSCode编辑器 或 Pycharm,可以直接使用界面下方的Terminal.

pip install schedule

2.基本使用

最基本的使用在文首已经提到过,下面给大家展示更多的调度任务例子:

import schedule
import time
def job():
    print("I'm working...")
# 每十分钟执行任务
schedule.every(10).minutes.do(job)
# 每个小时执行任务
schedule.every().hour.do(job)
# 每天的10:30执行任务
schedule.every().day.at("10:30").do(job)
# 每个月执行任务
schedule.every().monday.do(job)
# 每个星期三的13:15分执行任务
schedule.every().wednesday.at("13:15").do(job)
# 每分钟的第17秒执行任务
schedule.every().minute.at(":17").do(job)
while True:
    schedule.run_pending()
    time.sleep(1)

可以看到,从月到秒的配置,上面的例子都覆盖到了。不过如果你想只运行一次任务的话,可以这么配

import schedule
import time
def job_that_executes_once():
    # 此处编写的任务只会执行一次...
    return schedule.CancelJob
schedule.every().day.at('22:30').do(job_that_executes_once)
while True:
    schedule.run_pending()
    time.sleep(1)

参数传递

如果你有参数需要传递给作业去执行,你只需要这么做:

import schedule
def greet(name):
    print('Hello', name)
# do() 将额外的参数传递给job函数
schedule.every(2).seconds.do(greet, name='Alice')
schedule.every(4).seconds.do(greet, name='Bob')

获取目前所有的作业

如果你想获取目前所有的作业:

import schedule
def hello():
    print('Hello world')
schedule.every().second.do(hello)
all_jobs = schedule.get_jobs()

取消所有作业

如果某些机制触发了,你需要立即清除当前程序的所有作业:

import schedule
def greet(name):
    print('Hello {}'.format(name))
schedule.every().second.do(greet)
schedule.clear()

标签功能

在设置作业的时候,为了后续方便管理作业,你可以给作业打个标签,这样你可以通过标签过滤获取作业或取消作业。

import schedule
def greet(name):
    print('Hello {}'.format(name))
# .tag 打标签
schedule.every().day.do(greet, 'Andrea').tag('daily-tasks', 'friend')
schedule.every().hour.do(greet, 'John').tag('hourly-tasks', 'friend')
schedule.every().hour.do(greet, 'Monica').tag('hourly-tasks', 'customer')
schedule.every().day.do(greet, 'Derek').tag('daily-tasks', 'guest')
# get_jobs(标签):可以获取所有该标签的任务
friends = schedule.get_jobs('friend')
# 取消所有 daily-tasks 标签的任务
schedule.clear('daily-tasks')

设定作业截止时间

如果你需要让某个作业到某个时间截止,你可以通过这个方法:

import schedule
from datetime import datetime, timedelta, time
def job():
    print('Boo')
# 每个小时运行作业,18:30后停止
schedule.every(1).hours.until("18:30").do(job)
# 每个小时运行作业,2030-01-01 18:33 today
schedule.every(1).hours.until("2030-01-01 18:33").do(job)
# 每个小时运行作业,8个小时后停止
schedule.every(1).hours.until(timedelta(hours=8)).do(job)
# 每个小时运行作业,11:32:42后停止
schedule.every(1).hours.until(time(11, 33, 42)).do(job)
# 每个小时运行作业,2020-5-17 11:36:20后停止
schedule.every(1).hours.until(datetime(2020, 5, 17, 11, 36, 20)).do(job)

截止日期之后,该作业将无法运行。

立即运行所有作业,而不管其安排如何

如果某个机制触发了,你需要立即运行所有作业,可以调用 schedule.run_all() :

import schedule
def job_1():
    print('Foo')
def job_2():
    print('Bar')
schedule.every().monday.at("12:40").do(job_1)
schedule.every().tuesday.at("16:40").do(job_2)
schedule.run_all()
# 立即运行所有作业,每次作业间隔10秒
schedule.run_all(delay_seconds=10)

3.高级使用

装饰器安排作业

如果你觉得设定作业这种形式太啰嗦了,也可以使用装饰器模式:

from schedule import every, repeat, run_pending
import time
# 此装饰器效果等同于 schedule.every(10).minutes.do(job)
@repeat(every(10).minutes)
def job():
    print("I am a scheduled job")
while True:
    run_pending()
    time.sleep(1)

并行执行

默认情况下,Schedule 按顺序执行所有作业。其背后的原因是,很难找到让每个人都高兴的并行执行模型。

不过你可以通过多线程的形式来运行每个作业以解决此限制:

import threading
import time
import schedule
def job1():
    print("I'm running on thread %s" % threading.current_thread())
def job2():
    print("I'm running on thread %s" % threading.current_thread())
def job3():
    print("I'm running on thread %s" % threading.current_thread())
def run_threaded(job_func):
    job_thread = threading.Thread(target=job_func)
    job_thread.start()
schedule.every(10).seconds.do(run_threaded, job1)
schedule.every(10).seconds.do(run_threaded, job2)
schedule.every(10).seconds.do(run_threaded, job3)
while True:
    schedule.run_pending()
    time.sleep(1)

日志记录

Schedule 模块同时也支持 logging 日志记录,这么使用:

import schedule
import logging
logging.basicConfig()
schedule_logger = logging.getLogger('schedule')
# 日志级别为DEBUG
schedule_logger.setLevel(level=logging.DEBUG)
def job():
    print("Hello, Logs")
schedule.every().second.do(job)
schedule.run_all()
schedule.clear()

效果如下:

DEBUG:schedule:Running *all* 1 jobs with 0s delay in between
DEBUG:schedule:Running job Job(interval=1, unit=seconds, do=job, args=(), kwargs={})
Hello, Logs
DEBUG:schedule:Deleting *all* jobs

异常处理

Schedule 不会自动捕捉异常,它遇到异常会直接抛出,这会导致一个严重的问题:后续所有的作业都会被中断执行,因此我们需要捕捉到这些异常。

你可以手动捕捉,但是某些你预料不到的情况需要程序进行自动捕获,加一个装饰器就能做到了:

import functools
def catch_exceptions(cancel_on_failure=False):
    def catch_exceptions_decorator(job_func):
        @functools.wraps(job_func)
        def wrapper(*args, **kwargs):
            try:
                return job_func(*args, **kwargs)
            except:
                import traceback
                print(traceback.format_exc())
                if cancel_on_failure:
                    return schedule.CancelJob
        return wrapper
    return catch_exceptions_decorator
@catch_exceptions(cancel_on_failure=True)
def bad_task():
    return 1 / 0
schedule.every(5).minutes.do(bad_task)

这样,bad_task 在执行时遇到的任何错误,都会被 catch_exceptions 捕获,这点在保证调度任务正常运转的时候非常关键。

我们的文章到此就结束啦,如果你喜欢今天的Python 实战教程,请持续关注。

以上就是python周期任务调度工具Schedule使用详解的详细内容,更多关于周期任务调度工具Schedule的资料请关注三水点靠木其它相关文章!

Python 相关文章推荐
利用打码兔和超人打码自封装的打码类分享
Mar 16 Python
分析Python编程时利用wxPython来支持多线程的方法
Apr 07 Python
python自定义异常实例详解
Jul 11 Python
利用Python实现在同一网络中的本地文件共享方法
Jun 04 Python
Python实现从SQL型数据库读写dataframe型数据的方法【基于pandas】
Mar 18 Python
Python中的 is 和 == 以及字符串驻留机制详解
Jun 28 Python
Python3.6实现根据电影名称(支持电视剧名称),获取下载链接的方法
Aug 26 Python
Python实现微信机器人的方法
Sep 06 Python
Python爬虫实现“盗取”微信好友信息的方法分析
Sep 16 Python
使用python制作一个解压缩软件
Nov 13 Python
200行python代码实现贪吃蛇游戏
Apr 24 Python
PyInstaller运行原理及常用操作详解
Jun 13 Python
python百行代码实现汉服圈图片爬取
python可视化大屏库big_screen示例详解
python数据可视化JupyterLab实用扩展程序Mito
python入门学习关于for else的特殊特性讲解
Nov 20 #Python
Python标准库pathlib操作目录和文件
Nov 20 #Python
python数据可视化使用pyfinance分析证券收益示例详解
python编程学习使用管道Pipe编写优化代码
Nov 20 #Python
You might like
thinkphp实现图片上传功能分享
2014/03/04 PHP
php中fgetcsv()函数用法实例
2014/11/28 PHP
如何在旧的PHP系统中使用PHP 5.3之后的库
2015/12/02 PHP
PHP简单日历实现方法
2016/07/20 PHP
PHP中用Trait封装单例模式的实现
2019/12/18 PHP
js模拟实现Array的sort方法
2007/12/11 Javascript
js 操作select相关方法函数
2009/12/06 Javascript
jQuery判断元素是否是隐藏的代码
2011/04/24 Javascript
常用的几段javascript代码分享
2014/03/25 Javascript
js实现的标题栏新消息闪烁提示效果
2014/06/06 Javascript
JS小游戏之象棋暗棋源码详解
2014/09/25 Javascript
浅谈如何实现easyui的datebox格式化
2016/06/12 Javascript
jqGrid用法汇总(全经典)
2016/06/28 Javascript
输入法的回车与消息发送快捷键回车的冲突解决方法
2016/08/09 Javascript
js实现仿购物车加减效果
2017/03/01 Javascript
ant-design-vue按需加载的坑的解决
2020/05/14 Javascript
vue组件开发之tab切换组件使用详解
2020/08/21 Javascript
针对Vue路由history模式下Nginx后台配置操作
2020/10/22 Javascript
[36:20]完美世界DOTA2联赛PWL S3 access vs Rebirth 第一场 12.17
2020/12/18 DOTA
Python中针对函数处理的特殊方法
2014/03/06 Python
基于python的ini配置文件操作工具类
2019/04/24 Python
python科学计算之numpy——ufunc函数用法
2019/11/25 Python
Python3 + Appium + 安卓模拟器实现APP自动化测试并生成测试报告
2021/01/27 Python
使用Python制作一盏 3D 花灯喜迎元宵佳节
2021/02/26 Python
Hotels.com爱尔兰:全球酒店预订
2017/02/24 全球购物
什么是反射
2012/03/17 面试题
后勤自我鉴定
2013/10/13 职场文书
护理专业个人求职简历的自我评价
2013/10/13 职场文书
会计岗位职责
2013/11/08 职场文书
应用数学自荐书范文
2013/11/24 职场文书
高一生物教学反思
2014/01/17 职场文书
超市国庆节促销方案
2014/02/20 职场文书
离婚协议书范文
2015/01/26 职场文书
学风建设主题班会
2015/08/17 职场文书
2016师德师风学习心得体会
2016/01/12 职场文书
Redis 中使用 list,streams,pub/sub 几种方式实现消息队列的问题
2022/03/16 Redis