python周期任务调度工具Schedule使用详解


Posted in Python onNovember 23, 2021

如果你想周期性地执行某个 Python 脚本,最出名的选择应该是 Crontab 脚本,但是 Crontab 具有以下缺点:

1.不方便执行秒级任务。

2.当需要执行的定时任务有上百个的时候,Crontab 的管理就会特别不方便。

还有一个选择是 Celery,但是 Celery 的配置比较麻烦,如果你只是需要一个轻量级的调度工具,Celery 不会是一个好选择。

在你想要使用一个轻量级的任务调度工具,而且希望它尽量简单、容易使用、不需要外部依赖,最好能够容纳 Crontab 的所有基本功能,那么 Schedule 模块是你的不二之选。

使用它来调度任务可能只需要几行代码,感受一下:

import schedule
import time
def job():
    print("I'm working...")
schedule.every(10).minutes.do(job)
while True:
    schedule.run_pending()
    time.sleep(1)

上面的代码表示每10分钟执行一次 job 函数,非常简单方便。你只需要引入 schedule 模块,通过调用 scedule.every(时间数).时间类型.do(job) 发布周期任务。

发布后的周期任务需要用 run_pending 函数来检测是否执行,因此需要一个 While 循环不断地轮询这个函数。

下面具体讲讲Schedule模块的安装和初级、进阶使用方法。

1.准备

开始之前,你要确保Python和pip已经成功安装在电脑上,请选择以下任一种方式输入命令安装依赖:

Windows 环境 打开 Cmd (开始-运行-CMD)。

MacOS 环境 打开 Terminal (command+空格输入Terminal)。

如果你用的是 VSCode编辑器 或 Pycharm,可以直接使用界面下方的Terminal.

pip install schedule

2.基本使用

最基本的使用在文首已经提到过,下面给大家展示更多的调度任务例子:

import schedule
import time
def job():
    print("I'm working...")
# 每十分钟执行任务
schedule.every(10).minutes.do(job)
# 每个小时执行任务
schedule.every().hour.do(job)
# 每天的10:30执行任务
schedule.every().day.at("10:30").do(job)
# 每个月执行任务
schedule.every().monday.do(job)
# 每个星期三的13:15分执行任务
schedule.every().wednesday.at("13:15").do(job)
# 每分钟的第17秒执行任务
schedule.every().minute.at(":17").do(job)
while True:
    schedule.run_pending()
    time.sleep(1)

可以看到,从月到秒的配置,上面的例子都覆盖到了。不过如果你想只运行一次任务的话,可以这么配

import schedule
import time
def job_that_executes_once():
    # 此处编写的任务只会执行一次...
    return schedule.CancelJob
schedule.every().day.at('22:30').do(job_that_executes_once)
while True:
    schedule.run_pending()
    time.sleep(1)

参数传递

如果你有参数需要传递给作业去执行,你只需要这么做:

import schedule
def greet(name):
    print('Hello', name)
# do() 将额外的参数传递给job函数
schedule.every(2).seconds.do(greet, name='Alice')
schedule.every(4).seconds.do(greet, name='Bob')

获取目前所有的作业

如果你想获取目前所有的作业:

import schedule
def hello():
    print('Hello world')
schedule.every().second.do(hello)
all_jobs = schedule.get_jobs()

取消所有作业

如果某些机制触发了,你需要立即清除当前程序的所有作业:

import schedule
def greet(name):
    print('Hello {}'.format(name))
schedule.every().second.do(greet)
schedule.clear()

标签功能

在设置作业的时候,为了后续方便管理作业,你可以给作业打个标签,这样你可以通过标签过滤获取作业或取消作业。

import schedule
def greet(name):
    print('Hello {}'.format(name))
# .tag 打标签
schedule.every().day.do(greet, 'Andrea').tag('daily-tasks', 'friend')
schedule.every().hour.do(greet, 'John').tag('hourly-tasks', 'friend')
schedule.every().hour.do(greet, 'Monica').tag('hourly-tasks', 'customer')
schedule.every().day.do(greet, 'Derek').tag('daily-tasks', 'guest')
# get_jobs(标签):可以获取所有该标签的任务
friends = schedule.get_jobs('friend')
# 取消所有 daily-tasks 标签的任务
schedule.clear('daily-tasks')

设定作业截止时间

如果你需要让某个作业到某个时间截止,你可以通过这个方法:

import schedule
from datetime import datetime, timedelta, time
def job():
    print('Boo')
# 每个小时运行作业,18:30后停止
schedule.every(1).hours.until("18:30").do(job)
# 每个小时运行作业,2030-01-01 18:33 today
schedule.every(1).hours.until("2030-01-01 18:33").do(job)
# 每个小时运行作业,8个小时后停止
schedule.every(1).hours.until(timedelta(hours=8)).do(job)
# 每个小时运行作业,11:32:42后停止
schedule.every(1).hours.until(time(11, 33, 42)).do(job)
# 每个小时运行作业,2020-5-17 11:36:20后停止
schedule.every(1).hours.until(datetime(2020, 5, 17, 11, 36, 20)).do(job)

截止日期之后,该作业将无法运行。

立即运行所有作业,而不管其安排如何

如果某个机制触发了,你需要立即运行所有作业,可以调用 schedule.run_all() :

import schedule
def job_1():
    print('Foo')
def job_2():
    print('Bar')
schedule.every().monday.at("12:40").do(job_1)
schedule.every().tuesday.at("16:40").do(job_2)
schedule.run_all()
# 立即运行所有作业,每次作业间隔10秒
schedule.run_all(delay_seconds=10)

3.高级使用

装饰器安排作业

如果你觉得设定作业这种形式太啰嗦了,也可以使用装饰器模式:

from schedule import every, repeat, run_pending
import time
# 此装饰器效果等同于 schedule.every(10).minutes.do(job)
@repeat(every(10).minutes)
def job():
    print("I am a scheduled job")
while True:
    run_pending()
    time.sleep(1)

并行执行

默认情况下,Schedule 按顺序执行所有作业。其背后的原因是,很难找到让每个人都高兴的并行执行模型。

不过你可以通过多线程的形式来运行每个作业以解决此限制:

import threading
import time
import schedule
def job1():
    print("I'm running on thread %s" % threading.current_thread())
def job2():
    print("I'm running on thread %s" % threading.current_thread())
def job3():
    print("I'm running on thread %s" % threading.current_thread())
def run_threaded(job_func):
    job_thread = threading.Thread(target=job_func)
    job_thread.start()
schedule.every(10).seconds.do(run_threaded, job1)
schedule.every(10).seconds.do(run_threaded, job2)
schedule.every(10).seconds.do(run_threaded, job3)
while True:
    schedule.run_pending()
    time.sleep(1)

日志记录

Schedule 模块同时也支持 logging 日志记录,这么使用:

import schedule
import logging
logging.basicConfig()
schedule_logger = logging.getLogger('schedule')
# 日志级别为DEBUG
schedule_logger.setLevel(level=logging.DEBUG)
def job():
    print("Hello, Logs")
schedule.every().second.do(job)
schedule.run_all()
schedule.clear()

效果如下:

DEBUG:schedule:Running *all* 1 jobs with 0s delay in between
DEBUG:schedule:Running job Job(interval=1, unit=seconds, do=job, args=(), kwargs={})
Hello, Logs
DEBUG:schedule:Deleting *all* jobs

异常处理

Schedule 不会自动捕捉异常,它遇到异常会直接抛出,这会导致一个严重的问题:后续所有的作业都会被中断执行,因此我们需要捕捉到这些异常。

你可以手动捕捉,但是某些你预料不到的情况需要程序进行自动捕获,加一个装饰器就能做到了:

import functools
def catch_exceptions(cancel_on_failure=False):
    def catch_exceptions_decorator(job_func):
        @functools.wraps(job_func)
        def wrapper(*args, **kwargs):
            try:
                return job_func(*args, **kwargs)
            except:
                import traceback
                print(traceback.format_exc())
                if cancel_on_failure:
                    return schedule.CancelJob
        return wrapper
    return catch_exceptions_decorator
@catch_exceptions(cancel_on_failure=True)
def bad_task():
    return 1 / 0
schedule.every(5).minutes.do(bad_task)

这样,bad_task 在执行时遇到的任何错误,都会被 catch_exceptions 捕获,这点在保证调度任务正常运转的时候非常关键。

我们的文章到此就结束啦,如果你喜欢今天的Python 实战教程,请持续关注。

以上就是python周期任务调度工具Schedule使用详解的详细内容,更多关于周期任务调度工具Schedule的资料请关注三水点靠木其它相关文章!

Python 相关文章推荐
Python存取XML的常见方法实例分析
Mar 21 Python
开源软件包和环境管理系统Anaconda的安装使用
Sep 04 Python
Python基于whois模块简单识别网站域名及所有者的方法
Apr 23 Python
python计算日期之间的放假日期
Jun 05 Python
Python操作MySQL数据库的两种方式实例分析【pymysql和pandas】
Mar 18 Python
pandas.read_csv参数详解(小结)
Jun 21 Python
如何利用Anaconda配置简单的Python环境
Jun 24 Python
解决pycharm运行程序出现卡住scanning files to index索引的问题
Jun 27 Python
Python with用法:自动关闭文件进程
Jul 10 Python
django如何通过类视图使用装饰器
Jul 24 Python
Pytorch保存模型用于测试和用于继续训练的区别详解
Jan 10 Python
python实现经典排序算法的示例代码
Feb 07 Python
python百行代码实现汉服圈图片爬取
python可视化大屏库big_screen示例详解
python数据可视化JupyterLab实用扩展程序Mito
python入门学习关于for else的特殊特性讲解
Nov 20 #Python
Python标准库pathlib操作目录和文件
Nov 20 #Python
python数据可视化使用pyfinance分析证券收益示例详解
python编程学习使用管道Pipe编写优化代码
Nov 20 #Python
You might like
laravel 出现command not found问题的解决方案
2019/10/23 PHP
jQuery对象和DOM对象的相互转化实现代码
2010/03/02 Javascript
对象无length属性时IE6/IE7中无法将其转换成伪数组(ArrayLike)
2011/07/31 Javascript
JavaScript实现级联菜单的方法
2015/06/29 Javascript
jQuery元素属性操作实例(设置、获取及删除元素属性)
2016/09/08 Javascript
js实现二级导航功能
2017/03/03 Javascript
基于jQuery实现一个marquee无缝滚动的插件
2017/03/09 Javascript
jquery插件开发之选项卡制作详解
2017/08/30 jQuery
cocos creator Touch事件应用(触控选择多个子节点的实例)
2017/09/10 Javascript
微信二次分享报错invalid signature问题及解决方法
2019/04/01 Javascript
vue中的inject学习教程
2019/04/24 Javascript
vue表单中遍历表单操作按钮的显示隐藏示例
2019/10/30 Javascript
vue实现禁止浏览器记住密码功能的示例代码
2021/02/03 Vue.js
使用python实现strcmp函数功能示例
2014/03/25 Python
Python列表list数组array用法实例解析
2014/10/28 Python
python引用DLL文件的方法
2015/05/11 Python
python实现将汉字保存成文本的方法
2018/11/16 Python
Python静态类型检查新工具之pyright 使用指南
2019/04/26 Python
在PYQT5中QscrollArea(滚动条)的使用方法
2019/06/14 Python
pyqt5 QProgressBar清空进度条的实例
2019/06/21 Python
python异步Web框架sanic的实现
2020/04/27 Python
python实现mask矩阵示例(根据列表所给元素)
2020/07/30 Python
Python使用pyenv实现多环境管理
2021/02/05 Python
css3 实现元素弧线运动的示例代码
2020/04/24 HTML / CSS
HTML5 canvas基本绘图之图形组合
2016/06/27 HTML / CSS
从零实现一个自定义html5播放器的示例代码
2017/08/01 HTML / CSS
彪马西班牙官网:PUMA西班牙
2019/06/18 全球购物
anello泰国官方网站:日本流行包包品牌
2019/08/08 全球购物
StudentUniverse英国:学生航班、酒店和旅游
2019/08/25 全球购物
手工制作的意大利皮革运动鞋:KOIO
2020/01/05 全球购物
十八大闭幕感言
2014/01/22 职场文书
祖国在我心中的演讲稿
2014/05/04 职场文书
优秀教师先进事迹材料
2014/12/15 职场文书
python缺失值的解决方法总结
2021/06/09 Python
解决pycharm下载库时出现Failed to install package的问题
2021/09/04 Python
Win11 21h2可以升级22h2吗?看看你的电脑符不符合要求
2022/07/07 数码科技