python 用递归实现通用爬虫解析器


Posted in Python onApril 16, 2021

我们在写爬虫的过程中,除了研究反爬之外,几乎全部的时间都在写解析逻辑。那么,生命苦短,为什么我们不写一个通用解析器呢?对啊!为什么不呢?开整!

需求分析

爬虫要解析的网页类型无外乎 html、json 以及一些二进制文件(video、excel 文件等)。既然要做成通用解析器,我们有两种实现方式,一种是将网页内容转换成统一的形式,然后用对应的解析规则去解析,比如全部将网页内容转换成 html 形式,然后用 xpath 去提取。

python 用递归实现通用爬虫解析器

另外一种是配置文件预先告知的方式,你配置成什么类型,解析器就通过对应的解析规则去解析。

统一网页形式,需要做大量的网页内容形式转换,而配置文件预先告知则需要在配置时指定更多解析字段。相比较而言,通过第二种方式,未来改变较多的是配置规则,不需要动核心代码,引入 bug 的可能性较低。因此这里我们采用第二种方式实现解析器

进一步分析

解析器对于网页内容的提取,本质上和我们在本地电脑上查找和整理文件,没有什么差别。比如像下面这样

python 用递归实现通用爬虫解析器

解析内容就是从中提取我们想要的信息,然后整理成我们希望的格式。比如上面的内容,我们提取出来的形式应该是这样

{
  "design": "设计图.psd",
  "software": "sketch.dmg"
}

而在实际的爬虫开发过程中,网页形式远比以上的复杂。其实遇到最多的问题是在一组列表中嵌套一个列表,我们需要把这种形式提取出来。比如像下面这种形式

{
    "a": "a",
    "b": [
        {"c": "c1", "d": "d1"},
        {"c": "c2", "d": "d2"}]
}

他提取出信息后应该是这样

[
  {
    "a": "a",
    "c": "c1",
    "d": "d1"
  },
  {
    "a": "a",
    "c": "c2",
    "d": "d2"
  }
]

如果小伙伴对于算法熟悉的话,应该能察觉出这种遍历用递归来写是非常方便的。但要注意的是 python 会限定递归的层数,小伙伴可以通过下面这个方法查看递归限定的层数

import sys
print(sys.getrecursionlimit())

>>>1000

我这边限定的层数是 1k。对于解析网页来说完全够用了,如果哪个人把网页解析逻辑嵌套了 1000 层,我建议你直接跟老板提放弃这个网页吧!

再进一步分析

我们已经知道对于通用解析来说,就是通过配置解析规则提取页面的对应信息。而针对有列表层级的网页可能还涉及递归遍历问题。那如何去配置这种解析规则呢?其实很简单,只需要在进入每一个层级之前先指定该层的数据形式,比如下面这个原数据

{
  "a": "a",
  "b": [
          {"c": "c1", "d": "d1"},
          {"c": "c2", "d" : "d2"}
       ]
}

想提取嵌套信息,我们的解析规则就应该是这样的

[
 {
  "$name": "a",
  "$value_type": "raw",
  "$parse_method": "json",
  "$parse_rule": "a",
  "$each": []
 },
 {
  "$name": "__datas__",
  "$value_type": "recursion",
  "$parse_method": "json",
  "$parse_rule": "b",
  "$each": [
        {  
         "$name": "c",
          "$value_type": "raw",
         "$parse_method": "json",
         "$parse_rule": "c",
         "$each": []
        },
        {  
         "$name": "d",
          "$value_type": "raw",
         "$parse_method": "json",
         "$parse_rule": "d",
         "$each": []
        }
      ]
 }
]

其中 $name 字段表示我们最终希望最外层数据所拥有的字段名,当然如果是需要递归到内层的字段,则将列表保存为 __datas__ ,然后根据这个 __datas__ 进行内层结构的解析。最终我们得到的数据结构应该是这样的

[
  {"a": "a", "c": "c1", "d": "d1"}, 
  {"a": "a", "c": "c2", "d": "d2"}
]

以上我们只演示了 json 的解析规则,如果要拿来解析 html 对象呢?很简单,将解析方式改为 xpath 对象,然后传入 xpath 解析语法即可。

代码实现

总共分成两部分,一部分根据原最终结果和规则进行打包,将所有涉及 recursion 逻辑的字段进行转换,代码如下

def _pack_json(result, rules):
        item = {}

        for p_rule in rules:

            if p_rule.get("$value_type") == "raw":
                if p_rule.get("$parse_method") == "json":
                    item[p_rule.get("$name")] = glom(result, p_rule.get("$parse_rule"))

            elif p_rule.get("$value_type") == "recursion":
                if p_rule.get("$parse_method") == "json":
                    tmp_result = glom(result, p_rule.get("$parse_rule"))
                    total_result = []
                    for per_r in tmp_result:
                        total_result.append(_pack_json(per_r, p_rule.get("$each")))
                    item[p_rule.get("$name")] = total_result
        return item

另外一部分将上一步得到的进行解析,将打包得到的结果进行解包,即将所有内嵌的数据提到最外层,代码如下

def _unpack_datas(result: dict) -> list:
        if "__datas__" not in result:
            return [result]

        item_results = []
        all_item = result.pop("__datas__")

        for per_item in all_item:
            if "__datas__" in per_item:
                tmp_datas = per_item.pop("__datas__")
                for per_tmp_data in tmp_datas:
                    tmp_item = _unpack_datas(per_tmp_data)
                    for per_tmp_item in tmp_item:
                        item_results.append({**per_tmp_item, **per_item})
            else:
                item_results.append({**result, **per_item})

        return item_results

后再包一层执行入口就可以了,完整代码如下

from loguru import logger

from glom import glom


def parse(result, rules):

    def _pack_json(result, rules):
        item = {}

        for p_rule in rules:

            if p_rule.get("$value_type") == "raw":
                if p_rule.get("$parse_method") == "json":
                    item[p_rule.get("$name")] = glom(result, p_rule.get("$parse_rule"))

            elif p_rule.get("$value_type") == "recursion":
                if p_rule.get("$parse_method") == "json":
                    tmp_result = glom(result, p_rule.get("$parse_rule"))
                    total_result = []
                    for per_r in tmp_result:
                        total_result.append(_pack_json(per_r, p_rule.get("$each")))
                    item[p_rule.get("$name")] = total_result
        return item

    def _unpack_datas(result: dict) -> list:
        if "__datas__" not in result:
            return [result]

        item_results = []
        all_item = result.pop("__datas__")

        for per_item in all_item:
            if "__datas__" in per_item:
                tmp_datas = per_item.pop("__datas__")
                for per_tmp_data in tmp_datas:
                    tmp_item = _unpack_datas(per_tmp_data)
                    for per_tmp_item in tmp_item:
                        item_results.append({**per_tmp_item, **per_item})
            else:
                item_results.append({**result, **per_item})

        return item_results

    pack_result = _pack_json(result, rules)
    logger.info(pack_result)
    return _unpack_datas(pack_result)

以上,就是通用解析器的完整案例。案例中仅实现了对于 json 的支持,小伙伴可以基于自己的项目,改造成其他的解析形式。通用解析其实是鸡仔为了偷懒写的,因为鸡仔发现,在爬虫开发中,大部分工作都耗在解析这部分。而有了通用解析的前端页面,运营和数据分析师就可以根据自己的需要配置自己想爬取的站点了。人生苦短,你懂得。我去摸鱼了~

实现方式请移步至 github 查看:https://github.com/hacksman/learn_lab/blob/master/small_bug_lab/general_parser.py

以上就是python 用递归实现通用爬虫解析器的详细内容,更多关于python 递归实现爬虫解析器的资料请关注三水点靠木其它相关文章!

Python 相关文章推荐
python获得图片base64编码示例
Jan 16 Python
Python中最常用的操作列表的几种方法归纳
Apr 24 Python
Python栈算法的实现与简单应用示例
Nov 01 Python
python学生管理系统代码实现
Apr 05 Python
Python实现端口检测的方法
Jul 24 Python
使用python PIL库实现简单验证码的去噪方法步骤
May 10 Python
pandas 如何分割字符的实现方法
Jul 29 Python
Python with标签使用方法解析
Jan 17 Python
django实现模板中的字符串文字和自动转义
Mar 31 Python
Django设置Postgresql的操作
May 14 Python
Python3 webservice接口测试代码详解
Jun 23 Python
详解Python GUI编程之PyQt5入门到实战
Dec 10 Python
MATLAB 如何求取离散点的曲率最大值
用Python远程登陆服务器的步骤
Matlab求解数组中的最大值及它所在的具体位置
Apr 16 #Python
python 机器学习的标准化、归一化、正则化、离散化和白化
Apr 16 #Python
python中print格式化输出的问题
Apr 16 #Python
CocosCreator ScrollView优化系列之分帧加载
深度学习tensorflow基础mnist
You might like
php 学习资料零碎东西
2010/12/04 PHP
PHP filter_var() 函数 Filter 函数
2012/04/25 PHP
thinkphp3.x自定义Action、Model及View的简单实现方法
2016/05/19 PHP
让Laravel API永远返回JSON格式响应的方法示例
2018/09/05 PHP
php无限极分类实现方法分析
2019/07/04 PHP
Array.slice()与Array.splice()的返回值类型
2006/10/09 Javascript
二叉树的非递归后序遍历算法实例详解
2014/02/07 Javascript
jQuery setTimeout传递字符串参数报错的解决方法
2014/06/09 Javascript
jquery中的常用事件bind、hover、toggle等示例介绍
2014/07/21 Javascript
js delete 用法(删除对象属性及变量)
2014/08/24 Javascript
JQuery设置时间段下拉选择实例
2014/12/30 Javascript
javascript面向对象之定义成员方法实例分析
2015/01/13 Javascript
jQuery插件扩展测试实例
2016/06/21 Javascript
js+canvas实现动态吃豆人效果
2017/03/22 Javascript
微信小程序的分类页面制作
2017/06/27 Javascript
addeventlistener监听scroll跟touch(实例讲解)
2017/08/04 Javascript
js实现手机web图片左右滑动效果
2017/12/29 Javascript
Bootstrap开发中Tab标签页切换图表显示问题的解决方法
2018/07/13 Javascript
layui实现tab的添加拒绝重复的方法
2019/09/04 Javascript
vue组件入门知识全梳理
2020/09/21 Javascript
python实现的一个p2p文件传输实例
2014/06/04 Python
使用Python的Twisted框架实现一个简单的服务器
2015/04/16 Python
详解字符串在Python内部是如何省内存的
2020/02/03 Python
Python itertools.product方法代码实例
2020/03/27 Python
基于Django OneToOneField和ForeignKey的区别详解
2020/03/30 Python
Django+Celery实现动态配置定时任务的方法示例
2020/05/26 Python
AmazeUI 手机版页面的顶部导航条Header与侧边导航栏offCanvas的示例代码
2020/08/19 HTML / CSS
Pretty Little Thing爱尔兰:时尚女性服饰
2017/03/27 全球购物
超市采购员岗位职责
2014/02/01 职场文书
竞聘演讲稿
2014/04/24 职场文书
离婚协议书范文2014
2014/10/16 职场文书
大学生党性分析材料
2014/12/19 职场文书
导游经典开场白——导游词
2019/04/17 职场文书
吃通javascript正则表达式
2021/04/21 Javascript
pandas:get_dummies()与pd.factorize()的用法及区别说明
2021/05/21 Python
Opencv中cv2.floodFill算法的使用
2021/06/18 Python