深度学习tensorflow基础mnist


Posted in Python onApril 14, 2021

软件架构

mnist数据集的识别使用了两个非常小的网络来实现,第一个是最简单的全连接网络,第二个是卷积网络,mnist数据集是入门数据集,所以不需要进行图像增强,或者用生成器读入内存,直接使用简单的fit()命令就可以一次性训练

安装教程

  1. 使用到的主要第三方库有tensorflow1.x,基于TensorFlow的Keras,基础的库包括numpy,matplotlib
  2. 安装方式也很简答,例如:pip install numpy -i https://pypi.tuna.tsinghua.edu.cn/simple
  3. 注意tensorflow版本不能是2.x

使用说明

  1. 首先,我们预览数据集,运行mnistplt.py,绘制了4张训练用到的图像
  2. 训练全连接网络则运行Densemnist.py,得到权重Dense.h5,加载模型并预测运行Denseload.py
  3. 训练卷积网络则运行CNNmnist.py,得到权重CNN.h5,加载模型并预测运行CNNload.py

结果图

深度学习tensorflow基础mnist

深度学习tensorflow基础mnist

训练过程注释

全连接网络训练:

"""多层感知机训练"""
from tensorflow.examples.tutorials.mnist import input_data
from keras.models import  Sequential
from keras.layers import Dense
#模拟原始灰度数据读入
img_size=28
num=10
mnist=input_data.read_data_sets("./data",one_hot=True)
X_train,y_train,X_test,y_test=mnist.train.images,mnist.train.labels,mnist.test.images,mnist.test.labels
X_train=X_train.reshape(-1,img_size,img_size)
X_test=X_test.reshape(-1,img_size,img_size)
X_train=X_train*255
X_test=X_test*255
y_train=y_train.reshape(-1,num)
y_test=y_test.reshape(-1,num)
print(X_train.shape)
print(y_train.shape)
#全连接层只能输入一维
num_pixels = X_train.shape[1] * X_train.shape[2]
X_train = X_train.reshape(X_train.shape[0],num_pixels).astype('float32')
X_test = X_test.reshape(X_test.shape[0],num_pixels).astype('float32')
#归一化
X_train=X_train/255
X_test=X_test/255
# one hot编码,这里编好了,省略
#y_train = np_utils.to_categorical(y_train)
#y_test = np_utils.to_categorical(y_test)
#搭建网络
def baseline():
    """
    optimizer:优化器,如Adam
    loss:计算损失,当使用categorical_crossentropy损失函数时,标签应为多类模式,例如如果你有10个类别,
    每一个样本的标签应该是一个10维的向量,该向量在对应有值的索引位置为1其余为0
    metrics: 列表,包含评估模型在训练和测试时的性能的指标
    """
    model=Sequential()
    #第一步是确定输入层的数目:在创建模型时用input_dim参数确定,例如,有784个个输入变量,就设成num_pixels。
    #全连接层用Dense类定义:第一个参数是本层神经元个数,然后是初始化方式和激活函数,初始化方法有0到0.05的连续型均匀分布(uniform
    #Keras的默认方法也是这个,也可以用高斯分布进行初始化normal,初始化实际就是该层连接上权重与偏置的初始化
    model.add(Dense(num_pixels,input_dim=num_pixels,kernel_initializer='normal',activation='relu'))
    #softmax是一种用到该层所有神经元的激活函数
    model.add(Dense(num,kernel_initializer='normal',activation='softmax'))
    #categorical_crossentropy适用于多分类问题,并使用softmax作为输出层的激活函数的情况
    model.compile(loss='categorical_crossentropy',optimizer='adam',metrics=['accuracy'])
    return model
#训练模型
model = baseline()
"""
batch_size
整数
每次梯度更新的样本数。
未指定,默认为32
epochs
整数
训练模型迭代次数
verbose
日志展示,整数
0:为不在标准输出流输出日志信息
1:显示进度条
2:每个epoch输出一行记录
对于一个有 2000 个训练样本的数据集,将 2000 个样本分成大小为 500 的 batch,那么完成一个 epoch 需要 4 个 iteration
"""
model.fit(X_train,y_train,validation_data=(X_test,y_test),epochs=10,batch_size=200,verbose=2)
#模型概括打印
model.summary()
#model.evaluate()返回的是 损失值和你选定的指标值(例如,精度accuracy)
"""
verbose:控制日志显示的方式
verbose = 0  不在标准输出流输出日志信息
verbose = 1  输出进度条记录
"""
scores = model.evaluate(X_test,y_test,verbose=0)
print(scores)
#模型保存
model_dir="./Dense.h5"
model.save(model_dir)

CNN训练:

"""
模型构建与训练
Sequential 模型结构: 层(layers)的线性堆栈,它是一个简单的线性结构,没有多余分支,是多个网络层的堆叠
多少个滤波器就输出多少个特征图,即卷积核(滤波器)的深度
3通道RGB图片,一个滤波器有3个通道的小卷积核,但还是只算1个滤波器
"""
import numpy as np
from tensorflow.examples.tutorials.mnist import input_data
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Dropout
#Flatten层用来将输入“压平”,即把多维的输入一维化,
#常用在从卷积层到全连接层的过渡
from keras.layers import Flatten
from keras.layers.convolutional import Conv2D
from keras.layers.convolutional import MaxPooling2D
#模拟原始灰度数据读入
img_size=28
num=10
mnist=input_data.read_data_sets("./data",one_hot=True)
X_train,y_train,X_test,y_test=mnist.train.images,mnist.train.labels,mnist.test.images,mnist.test.labels
X_train=X_train.reshape(-1,img_size,img_size)
X_test=X_test.reshape(-1,img_size,img_size)
X_train=X_train*255
X_test=X_test*255
y_train=y_train.reshape(-1,num)
y_test=y_test.reshape(-1,num)
print(X_train.shape) #(55000, 28, 28)
print(y_train.shape) #(55000, 10)
#此处卷积输入的形状要与模型中的input_shape匹配
X_train = X_train.reshape(X_train.shape[0],28,28,1).astype('float32')
X_test = X_test.reshape(X_test.shape[0],28,28,1).astype('float32')
print(X_train.shape)#(55000,28,28,1)
#归一化
X_train=X_train/255
X_test=X_test/255
# one hot编码,这里编好了,省略
#y_train = np_utils.to_categorical(y_train)
#y_test = np_utils.to_categorical(y_test)
#搭建CNN网络
def CNN():
    """
    第一层是卷积层。该层有32个feature map,作为模型的输入层,接受[pixels][width][height]大小的输入数据。feature map的大小是1*5*5,其输出接一个‘relu'激活函数
    下一层是pooling层,使用了MaxPooling,大小为2*2
    Flatten压缩一维后作为全连接层的输入层
    接下来是全连接层,有128个神经元,激活函数采用‘relu'
    最后一层是输出层,有10个神经元,每个神经元对应一个类别,输出值表示样本属于该类别的概率大小
    """
    model = Sequential()
    model.add(Conv2D(32, (5, 5), input_shape=(img_size,img_size,1), activation='relu'))
    model.add(MaxPooling2D(pool_size=(2, 2)))
    model.add(Flatten())
    model.add(Dense(128, activation='relu'))
    model.add(Dense(num, activation='softmax'))
    #编译
    model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
    return model
#模型训练
model=CNN()
model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=5, batch_size=200, verbose=1)
model.summary()
scores = model.evaluate(X_test,y_test,verbose=1)
print(scores)
#模型保存
model_dir="./CNN.h5"
model.save(model_dir)

到此这篇关于mnist的文章就介绍到这了,希望可以帮到你们,更多相关深度学习内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章,希望大家以后多多支持三水点靠木!

Python 相关文章推荐
python 正则表达式 概述及常用字符
May 04 Python
Python实例分享:快速查找出被挂马的文件
Jun 08 Python
Django objects.all()、objects.get()与objects.filter()之间的区别介绍
Jun 12 Python
解决Django模板无法使用perms变量问题的方法
Sep 10 Python
django.db.utils.ProgrammingError: (1146, u“Table‘’ doesn’t exist”)问题的解决
Jul 13 Python
详解Python 装饰器执行顺序迷思
Aug 08 Python
由Python编写的MySQL管理工具代码实例
Apr 09 Python
Python3中的最大整数和最大浮点数实例
Jul 09 Python
python移位运算的实现
Jul 15 Python
python3.7环境下安装Anaconda的教程图解
Sep 10 Python
Python-split()函数实例用法讲解
Dec 18 Python
为了顺利买到演唱会的票用Python制作了自动抢票的脚本
Oct 16 Python
Python 多线程之threading 模块的使用
Apr 14 #Python
教你如何用python开发一款数字推盘小游戏
深度学习详解之初试机器学习
正确的理解和使用Django信号(Signals)
Apr 14 #Python
编写python程序的90条建议
Apr 14 #Python
Python基础知识之变量的详解
理解深度学习之深度学习简介
Apr 14 #Python
You might like
PHP判断搜索引擎蜘蛛并自动记忆到文件的代码
2012/02/04 PHP
php处理静态页面:页面设置缓存时间实例
2017/06/22 PHP
JavaScript中反正弦函数Math.asin()的使用简介
2015/06/14 Javascript
js针对ip地址、子网掩码、网关的逻辑性判断
2016/01/06 Javascript
Sea.JS知识总结
2016/05/05 Javascript
JavaScript构建自己的对象示例
2016/11/29 Javascript
angular 动态组件类型详解(四种组件类型)
2017/02/22 Javascript
web.js.字符串与正则表达式操作
2017/05/13 Javascript
移动端手指放大缩小插件与js源码
2017/05/22 Javascript
详解react-native WebView 返回处理(非回调方法可解决)
2018/02/27 Javascript
jQuery插件Validation表单验证详解
2018/05/26 jQuery
微信网页登录逻辑与实现方法
2019/04/29 Javascript
JavaScript实现随机点名器
2020/03/25 Javascript
微信小程序开发(二):页面跳转并传参操作示例
2020/06/01 Javascript
Python对象的深拷贝和浅拷贝详解
2014/08/25 Python
Python实现的矩阵类实例
2017/08/22 Python
获取Django项目的全部url方法详解
2017/10/26 Python
django定期执行任务(实例讲解)
2017/11/03 Python
PyTorch学习笔记之回归实战
2018/05/28 Python
Python多线程应用于自动化测试操作示例
2018/12/06 Python
Python判断对象是否为文件对象(file object)的三种方法示例
2019/04/26 Python
详解Python字符串切片
2019/05/20 Python
python实现拼图小游戏
2020/02/22 Python
Python读写锁实现实现代码解析
2020/11/28 Python
CSS3 3D立方体效果示例-transform也不过如此
2016/12/05 HTML / CSS
MySQL面试题
2014/01/12 面试题
北京天润融通.net面试题笔试题
2012/02/20 面试题
总经理任命书范本
2014/06/05 职场文书
小学班级口号
2014/06/09 职场文书
企业文化口号
2014/06/12 职场文书
2014年纪检部工作总结
2014/11/12 职场文书
2014年应急管理工作总结
2014/11/26 职场文书
公司员工培训管理制度
2015/08/04 职场文书
有关保护环境的宣传标语100条
2019/08/07 职场文书
Javascript中Microtask和Macrotask鲜为人知的知识点
2022/04/02 Javascript
vue.js 使用原生js实现轮播图
2022/04/26 Vue.js