Pytorch学习之torch用法----比较操作(Comparison Ops)


Posted in Python onJune 28, 2020

1. torch.eq(input, other, out=None)

说明: 比较元素是否相等,第二个参数可以是一个数,或者是第一个参数同类型形状的张量

参数:

input(Tensor) ---- 待比较张量

other(Tenosr or float) ---- 比较张量或者数

out(Tensor,可选的) ---- 输出张量

返回值: 一个torch.ByteTensor张量,包含了每个位置的比较结果(相等为1,不等为0)

>>> a = torch.Tensor([[1, 2], [3, 4]])
>>> b = torch.Tensor([[1, 1], [4, 4]])
>>> torch.eq(a, b)
tensor([[1, 0],
  [0, 1]], dtype=torch.uint8)

2. torch.equal(tensor1, tensor2, out=None)

说明: 如果两个张量有相同的形状和元素值,则返回true,否则False

参数:

tensor1(Tenosr) ---- 比较张量1

tensor2(Tensor) ---- 比较张量2

out(Tensor,可选的) ---- 输出张量

>>> a = torch.Tensor([1, 2])
>>> b = torch.Tensor([1, 2])
>>> torch.equal(a, b)
True

3. torch.ge(input, other, out=None)

说明: 逐元素比较input和other,即是否input >= other。

参数:

input(Tensor) ---- 待对比的张量

other(Tensor or float) ---- 对比的张量或float值

out(Tensor,可选的) ---- 输出张量,

>>> a = torch.Tensor([[1, 2], [3, 4]])
>>> b = torch.Tensor([[1, 1], [4, 4]])
>>> torch.ge(a, b)
tensor([[1, 1],
  [0, 1]], dtype=torch.uint8)

4. torch.gt(input, other, out=None)

说明: 逐元素比较input和other,即是否input > other

参数:

input(Tensor) ---- 要对比的张量

other(Tensor or float) ---- 要对比的张量或float值

out(Tensor,可选的) ---- 输出张量

>>> a = torch.Tensor([[1, 2], [3, 4]])
>>> b = torch.Tensor([[1, 1], [4, 4]])
>>> torch.gt(a, b)
tensor([[0, 1],
  [0, 0]], dtype=torch.uint8)

5. torch.kthvalue(input, k, dim=None, out=None)

说明: 取输入张量input指定维度上第k个最小值。如果不指定dim。默认为最后一维。返回一个元组(value, indices), 其中indices是原始输入张量中沿dim维的第k个最小值下标。

参数:

input(Tensor) ---- 要对比的张量

k(int) ---- 第k个最小值

dim(int, 可选的) ---- 沿着此维度进行排序

out(tuple,可选的) ---- 输出元组

>>> x = torch.arange(1, 6)
>>> x
tensor([1, 2, 3, 4, 5])
>>> torch.kthvalue(x, 4)
torch.return_types.kthvalue(
values=tensor(4),
indices=tensor(3))
>>> torch.kthvalue(x, 1)
torch.return_types.kthvalue(
values=tensor(1),
indices=tensor(0))

6. torch.le(input, other, out=None)

说明: 逐元素比较input和other,即是否input <= other.

参数:

input(Tenosr) ---- 要对比的张量

other(Tensor or float) ---- 对比的张量或float值

out(Tensor,可选的) ---- 输出张量

>>> a = torch.Tensor([[1, 2], [3, 4]])
>>> b = torch.Tensor([[1, 1], [4, 4]])
>>> torch.le(a, b)
tensor([[1, 0],
  [1, 1]], dtype=torch.uint8)

7. torch.lt(input, other, out=None)

说明: 逐元素比较input和other,即是否input < other

参数:

input(Tensor) ---- 要对比的张量

other(Tensor or float) ---- 对比的张量或float值

out(Tensor,可选的) ---- 输出张量

>>> a = torch.Tensor([[1, 2], [3, 4]])
>>> b = torch.Tensor([[1, 1], [4, 4]])
>>> torch.lt(a, b)
tensor([[0, 0],
  [1, 0]], dtype=torch.uint8)

8. torch.max(input)

说明: 返回输入张量所有元素的最大值

参数:

input(Tensor) ---- 输入张量

>>> a = torch.randn(1, 3)
>>> a
tensor([[ 0.1553, -0.4140, 1.8393]])
>>> torch.max(a)
tensor(1.8393)

9. torch.max(input, dim, max=None, max_indices=None)

说明: 返回输入张量给定维度上每行的最大值,并同时返回每个最大值的位置索引。

参数:

input(Tensor) ---- 输入张量

dim(int) ---- 指定的维度

max(Tensor,可选的) ---- 结果张量,包含给定维度上的最大值

max_indices(LongTensor,可选的) ---- 结果张量,包含给定维度上每个最大值的位置的索引。

>>> a = torch.randn(4, 4)
>>> a
tensor([[ 0.4067, -0.7722, -0.6560, -0.9621],
  [-0.8754, 0.0282, -0.7947, -0.1870],
  [ 0.4300, 0.5444, 0.3180, 1.2647],
  [ 0.0775, 0.5886, 0.1662, 0.8986]])
>>> torch.max(a, 1)
torch.return_types.max(
values=tensor([0.4067, 0.0282, 1.2647, 0.8986]),
indices=tensor([0, 1, 3, 3]))

10. torch.max(input, other, out=None)

说明: 返回两个元素的最大值。

参数:

input(Tensor) ---- 待比较张量

other(Tensor) ---- 比较张量

out(Tensor,可选的) ---- 结果张量

>>> a = torch.randn(4)
>>> a
tensor([ 0.5767, -1.0841, -0.0942, -0.9405])
>>> b = torch.randn(4)
>>> b
tensor([-0.6375, 1.4165, 0.2738, -0.8996])
>>> torch.max(a, b)
tensor([ 0.5767, 1.4165, 0.2738, -0.8996])

11.torch.min(input)

说明: 返回输入张量所有元素的最小值

参数:

input(Tensor) ---- 输入张量

>>> a = torch.randn(1, 4)
>>> a
tensor([[-0.8142, -0.9847, -0.3637, 0.5191]])
>>> torch.min(a)
tensor(-0.9847)

12. torch.min(input, dim, min=None, min_indices=None)

说明: 返回输入张量给定维度上每行的最小值,并同时返回每个最小值的位置索引

参数:

input(Tensor) ---- 输入张量

dim(int) ---- 指定的维度

min(Tensor,可选的) ---- 结果张量,包含给定维度上的最小值

min_indices(LongTensor,可选的) ---- 结果张量,包含给定维度上每个最小值的位置索引。

>>> a = torch.randn(4, 4)
>>> a
tensor([[-0.0243, -0.7382, 0.3102, 0.9720],
  [-0.3805, -0.7999, -1.2856, 0.2657],
  [-1.0284, -0.1638, -0.8840, 1.2679],
  [-1.0347, -2.3428, 0.3107, 1.0575]])
>>> torch.min(a, 1)
torch.return_types.min(
values=tensor([-0.7382, -1.2856, -1.0284, -2.3428]),
indices=tensor([1, 2, 0, 1]))

13. torch.ne(input, other, out=None)

说明: 逐元素比较input和other,即是否input 不等于 other。第二个参数可以为一个数或与第一个参数相同形状和类型的张量

参数:

input(Tensor) ---- 待对比的张量

other(Tensor or float) ---- 对比的张量或float值

out(Tensor, 可选的) ---- 输出张量

** 返回值:** 一个torch.ByteTensor 张量,包含了每个位置的比较结果,如果tensor和other不相等为True,返回1.

>>> import torch
>>> a = torch.Tensor([[1, 2], [3, 4]])
>>> b = torch.Tensor([[1, 1], [4, 4]])
>>> torch.ne(a, b)
tensor([[0, 1],
  [1, 0]], dtype=torch.uint8)

14. torch.sort(input, dim=None, descending=False, out=None)

说明: 对输入张量input沿指定维度按升序排序,如果不给定dim,则默认为输入的最后一维。如果指定参数descending为True,则按降序排序。

参数:

input(Tensor) ---- 要排序的张量

dim(int,可选的) ---- 沿着此维度排序

descending(bool,可选的) ---- 布尔值,控制升序排序

out(tuple,可选的) ---- 输出张量

返回值: 为ByteTensor类型或与tensor相同类型,为元组(sorted_tensor,sorted_indices),sorted_indices为原始输入中的下标

>>> x = torch.randn(3, 4)
>>> x
tensor([[-0.3613, -0.2583, -0.4276, -1.3106],
  [-1.1577, -0.7505, 1.7217, -0.6247],
  [-0.1338, 0.4423, 0.0280, -1.4796]])
>>> sorted, indices = torch.sort(x)
>>> sorted
tensor([[-1.3106, -0.4276, -0.3613, -0.2583],
  [-1.1577, -0.7505, -0.6247, 1.7217],
  [-1.4796, -0.1338, 0.0280, 0.4423]])
>>> indices
tensor([[3, 2, 0, 1],
  [0, 1, 3, 2],
  [3, 0, 2, 1]])

15. torch.topk(input, dim=None, largest=True, sorted=True, out=None)

说明: 沿指定dim维度返回输入张量input中k个最大值。如果不指定dim,则默认input的最后一维,如果largest为False,则返回最小的k个值。

参数:

input(Tensor) ---- 输入张量

k(int) ---- “top-k"中的k值

dim(int,可选的) ---- 排序的维度

largest(bool,可选的) ---- 布尔值,控制返回最大或最小值

sorted(bool,可选的) ---- 布尔值,控制返回值是否排序

out(tuple,可选的) ---- 可选输出张量

返回值: 返回一个元组(values, indices),其中indices是原始输入张量input中排序元素下标。如果设定布尔值sorted为True,将会确保返回的k个值被排序

>>> x = torch.arange(1, 6)
>>> x
tensor([1, 2, 3, 4, 5])
>>> torch.topk(x, 3)
torch.return_types.topk(
values=tensor([5, 4, 3]),
indices=tensor([4, 3, 2]))
>>> torch.topk(x, 3, 0, largest=False)
torch.return_types.topk(
values=tensor([1, 2, 3]),
indices=tensor([0, 1, 2]))

以上这篇Pytorch学习之torch用法----比较操作(Comparison Ops)就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python函数缺省值与引用学习笔记分享
Feb 10 Python
python获得图片base64编码示例
Jan 16 Python
pygame学习笔记(4):声音控制
Apr 15 Python
详解Django中的过滤器
Jul 16 Python
python PIL模块与随机生成中文验证码
Feb 27 Python
python中将字典形式的数据循环插入Excel
Jan 16 Python
python实现决策树ID3算法的示例代码
May 30 Python
Python动态生成多维数组的方法示例
Aug 09 Python
Python安装selenium包详细过程
Jul 23 Python
python按行读取文件并找出其中指定字符串
Aug 08 Python
Python实现决策树并且使用Graphviz可视化的例子
Aug 09 Python
Python获取android设备cpu和内存占用情况
Nov 15 Python
PyTorch的torch.cat用法
Jun 28 #Python
使用pytorch 筛选出一定范围的值
Jun 28 #Python
解析python 中/ 和 % 和 //(地板除)
Jun 28 #Python
pytorch 常用函数 max ,eq说明
Jun 28 #Python
浅谈pytorch中torch.max和F.softmax函数的维度解释
Jun 28 #Python
Python turtle库的画笔控制说明
Jun 28 #Python
使用python修改文件并立即写回到原始位置操作(inplace读写)
Jun 28 #Python
You might like
phpmyadmin3 安装配置图解教程
2012/03/29 PHP
Zend Framework教程之Application和Bootstrap用法详解
2016/03/10 PHP
微信支付开发告警通知实例
2016/07/12 PHP
实现连缀调用的map方法(prototype)
2009/08/05 Javascript
ASP小贴士/ASP Tips javascript tips可以当桌面
2009/12/10 Javascript
jquery蒙版控件实现代码
2010/12/08 Javascript
基于jquery的无限级联下拉框js插件
2011/10/29 Javascript
JQuery入门——事件切换之toggle()方法应用介绍
2013/02/05 Javascript
js编码、解码函数介绍及其使用示例
2013/09/05 Javascript
event对象获取方法总结在google浏览器下测试
2013/11/03 Javascript
JavaScript调用客户端的可执行文件(示例代码)
2013/11/28 Javascript
Javascript验证用户输入URL地址是否为空及格式是否正确
2014/10/09 Javascript
JS实现往下不断流动网页背景的方法
2015/02/27 Javascript
ionic js 复选框 与普通的 HTML 复选框到底有没区别
2016/06/06 Javascript
AngularJS基础 ng-value 指令简单示例
2016/08/03 Javascript
AngularJS中$http服务常用的应用及参数
2016/08/22 Javascript
JavaScript实现的鼠标响应颜色渐变效果完整实例
2017/02/18 Javascript
以v-model与promise两种方式实现vue弹窗组件
2018/05/21 Javascript
jQuery实现点击自身以外区域关闭弹出层功能完整示例【改进版】
2018/07/31 jQuery
node和vue实现商城用户地址模块
2018/12/05 Javascript
你可能不知道的CORS跨域资源共享
2019/03/13 Javascript
vue实现抖音时间转盘
2019/09/08 Javascript
[51:44]2018DOTA2亚洲邀请赛 4.3 突围赛 Optic vs iG 第二场
2018/04/04 DOTA
python3实现读取chrome浏览器cookie
2016/06/19 Python
python http基本验证方法
2018/12/26 Python
python opencv鼠标事件实现画框圈定目标获取坐标信息
2020/04/18 Python
django 数据库连接模块解析及简单长连接改造方法
2019/08/29 Python
如何基于python测量代码运行时间
2019/12/25 Python
pytorch实现线性拟合方式
2020/01/15 Python
Tensorflow tf.dynamic_partition矩阵拆分示例(Python3)
2020/02/07 Python
如何从csv文件构建Tensorflow的数据集
2020/09/21 Python
如何利用XMLHTTP检测URL及探测服务器信息
2013/11/10 面试题
教师求职信范文分享
2013/12/27 职场文书
群众路线个人整改方案
2014/10/25 职场文书
如何拟写通知正文?
2019/04/02 职场文书
解决Pytorch修改预训练模型时遇到key不匹配的情况
2021/06/05 Python