Pytorch学习之torch用法----比较操作(Comparison Ops)


Posted in Python onJune 28, 2020

1. torch.eq(input, other, out=None)

说明: 比较元素是否相等,第二个参数可以是一个数,或者是第一个参数同类型形状的张量

参数:

input(Tensor) ---- 待比较张量

other(Tenosr or float) ---- 比较张量或者数

out(Tensor,可选的) ---- 输出张量

返回值: 一个torch.ByteTensor张量,包含了每个位置的比较结果(相等为1,不等为0)

>>> a = torch.Tensor([[1, 2], [3, 4]])
>>> b = torch.Tensor([[1, 1], [4, 4]])
>>> torch.eq(a, b)
tensor([[1, 0],
  [0, 1]], dtype=torch.uint8)

2. torch.equal(tensor1, tensor2, out=None)

说明: 如果两个张量有相同的形状和元素值,则返回true,否则False

参数:

tensor1(Tenosr) ---- 比较张量1

tensor2(Tensor) ---- 比较张量2

out(Tensor,可选的) ---- 输出张量

>>> a = torch.Tensor([1, 2])
>>> b = torch.Tensor([1, 2])
>>> torch.equal(a, b)
True

3. torch.ge(input, other, out=None)

说明: 逐元素比较input和other,即是否input >= other。

参数:

input(Tensor) ---- 待对比的张量

other(Tensor or float) ---- 对比的张量或float值

out(Tensor,可选的) ---- 输出张量,

>>> a = torch.Tensor([[1, 2], [3, 4]])
>>> b = torch.Tensor([[1, 1], [4, 4]])
>>> torch.ge(a, b)
tensor([[1, 1],
  [0, 1]], dtype=torch.uint8)

4. torch.gt(input, other, out=None)

说明: 逐元素比较input和other,即是否input > other

参数:

input(Tensor) ---- 要对比的张量

other(Tensor or float) ---- 要对比的张量或float值

out(Tensor,可选的) ---- 输出张量

>>> a = torch.Tensor([[1, 2], [3, 4]])
>>> b = torch.Tensor([[1, 1], [4, 4]])
>>> torch.gt(a, b)
tensor([[0, 1],
  [0, 0]], dtype=torch.uint8)

5. torch.kthvalue(input, k, dim=None, out=None)

说明: 取输入张量input指定维度上第k个最小值。如果不指定dim。默认为最后一维。返回一个元组(value, indices), 其中indices是原始输入张量中沿dim维的第k个最小值下标。

参数:

input(Tensor) ---- 要对比的张量

k(int) ---- 第k个最小值

dim(int, 可选的) ---- 沿着此维度进行排序

out(tuple,可选的) ---- 输出元组

>>> x = torch.arange(1, 6)
>>> x
tensor([1, 2, 3, 4, 5])
>>> torch.kthvalue(x, 4)
torch.return_types.kthvalue(
values=tensor(4),
indices=tensor(3))
>>> torch.kthvalue(x, 1)
torch.return_types.kthvalue(
values=tensor(1),
indices=tensor(0))

6. torch.le(input, other, out=None)

说明: 逐元素比较input和other,即是否input <= other.

参数:

input(Tenosr) ---- 要对比的张量

other(Tensor or float) ---- 对比的张量或float值

out(Tensor,可选的) ---- 输出张量

>>> a = torch.Tensor([[1, 2], [3, 4]])
>>> b = torch.Tensor([[1, 1], [4, 4]])
>>> torch.le(a, b)
tensor([[1, 0],
  [1, 1]], dtype=torch.uint8)

7. torch.lt(input, other, out=None)

说明: 逐元素比较input和other,即是否input < other

参数:

input(Tensor) ---- 要对比的张量

other(Tensor or float) ---- 对比的张量或float值

out(Tensor,可选的) ---- 输出张量

>>> a = torch.Tensor([[1, 2], [3, 4]])
>>> b = torch.Tensor([[1, 1], [4, 4]])
>>> torch.lt(a, b)
tensor([[0, 0],
  [1, 0]], dtype=torch.uint8)

8. torch.max(input)

说明: 返回输入张量所有元素的最大值

参数:

input(Tensor) ---- 输入张量

>>> a = torch.randn(1, 3)
>>> a
tensor([[ 0.1553, -0.4140, 1.8393]])
>>> torch.max(a)
tensor(1.8393)

9. torch.max(input, dim, max=None, max_indices=None)

说明: 返回输入张量给定维度上每行的最大值,并同时返回每个最大值的位置索引。

参数:

input(Tensor) ---- 输入张量

dim(int) ---- 指定的维度

max(Tensor,可选的) ---- 结果张量,包含给定维度上的最大值

max_indices(LongTensor,可选的) ---- 结果张量,包含给定维度上每个最大值的位置的索引。

>>> a = torch.randn(4, 4)
>>> a
tensor([[ 0.4067, -0.7722, -0.6560, -0.9621],
  [-0.8754, 0.0282, -0.7947, -0.1870],
  [ 0.4300, 0.5444, 0.3180, 1.2647],
  [ 0.0775, 0.5886, 0.1662, 0.8986]])
>>> torch.max(a, 1)
torch.return_types.max(
values=tensor([0.4067, 0.0282, 1.2647, 0.8986]),
indices=tensor([0, 1, 3, 3]))

10. torch.max(input, other, out=None)

说明: 返回两个元素的最大值。

参数:

input(Tensor) ---- 待比较张量

other(Tensor) ---- 比较张量

out(Tensor,可选的) ---- 结果张量

>>> a = torch.randn(4)
>>> a
tensor([ 0.5767, -1.0841, -0.0942, -0.9405])
>>> b = torch.randn(4)
>>> b
tensor([-0.6375, 1.4165, 0.2738, -0.8996])
>>> torch.max(a, b)
tensor([ 0.5767, 1.4165, 0.2738, -0.8996])

11.torch.min(input)

说明: 返回输入张量所有元素的最小值

参数:

input(Tensor) ---- 输入张量

>>> a = torch.randn(1, 4)
>>> a
tensor([[-0.8142, -0.9847, -0.3637, 0.5191]])
>>> torch.min(a)
tensor(-0.9847)

12. torch.min(input, dim, min=None, min_indices=None)

说明: 返回输入张量给定维度上每行的最小值,并同时返回每个最小值的位置索引

参数:

input(Tensor) ---- 输入张量

dim(int) ---- 指定的维度

min(Tensor,可选的) ---- 结果张量,包含给定维度上的最小值

min_indices(LongTensor,可选的) ---- 结果张量,包含给定维度上每个最小值的位置索引。

>>> a = torch.randn(4, 4)
>>> a
tensor([[-0.0243, -0.7382, 0.3102, 0.9720],
  [-0.3805, -0.7999, -1.2856, 0.2657],
  [-1.0284, -0.1638, -0.8840, 1.2679],
  [-1.0347, -2.3428, 0.3107, 1.0575]])
>>> torch.min(a, 1)
torch.return_types.min(
values=tensor([-0.7382, -1.2856, -1.0284, -2.3428]),
indices=tensor([1, 2, 0, 1]))

13. torch.ne(input, other, out=None)

说明: 逐元素比较input和other,即是否input 不等于 other。第二个参数可以为一个数或与第一个参数相同形状和类型的张量

参数:

input(Tensor) ---- 待对比的张量

other(Tensor or float) ---- 对比的张量或float值

out(Tensor, 可选的) ---- 输出张量

** 返回值:** 一个torch.ByteTensor 张量,包含了每个位置的比较结果,如果tensor和other不相等为True,返回1.

>>> import torch
>>> a = torch.Tensor([[1, 2], [3, 4]])
>>> b = torch.Tensor([[1, 1], [4, 4]])
>>> torch.ne(a, b)
tensor([[0, 1],
  [1, 0]], dtype=torch.uint8)

14. torch.sort(input, dim=None, descending=False, out=None)

说明: 对输入张量input沿指定维度按升序排序,如果不给定dim,则默认为输入的最后一维。如果指定参数descending为True,则按降序排序。

参数:

input(Tensor) ---- 要排序的张量

dim(int,可选的) ---- 沿着此维度排序

descending(bool,可选的) ---- 布尔值,控制升序排序

out(tuple,可选的) ---- 输出张量

返回值: 为ByteTensor类型或与tensor相同类型,为元组(sorted_tensor,sorted_indices),sorted_indices为原始输入中的下标

>>> x = torch.randn(3, 4)
>>> x
tensor([[-0.3613, -0.2583, -0.4276, -1.3106],
  [-1.1577, -0.7505, 1.7217, -0.6247],
  [-0.1338, 0.4423, 0.0280, -1.4796]])
>>> sorted, indices = torch.sort(x)
>>> sorted
tensor([[-1.3106, -0.4276, -0.3613, -0.2583],
  [-1.1577, -0.7505, -0.6247, 1.7217],
  [-1.4796, -0.1338, 0.0280, 0.4423]])
>>> indices
tensor([[3, 2, 0, 1],
  [0, 1, 3, 2],
  [3, 0, 2, 1]])

15. torch.topk(input, dim=None, largest=True, sorted=True, out=None)

说明: 沿指定dim维度返回输入张量input中k个最大值。如果不指定dim,则默认input的最后一维,如果largest为False,则返回最小的k个值。

参数:

input(Tensor) ---- 输入张量

k(int) ---- “top-k"中的k值

dim(int,可选的) ---- 排序的维度

largest(bool,可选的) ---- 布尔值,控制返回最大或最小值

sorted(bool,可选的) ---- 布尔值,控制返回值是否排序

out(tuple,可选的) ---- 可选输出张量

返回值: 返回一个元组(values, indices),其中indices是原始输入张量input中排序元素下标。如果设定布尔值sorted为True,将会确保返回的k个值被排序

>>> x = torch.arange(1, 6)
>>> x
tensor([1, 2, 3, 4, 5])
>>> torch.topk(x, 3)
torch.return_types.topk(
values=tensor([5, 4, 3]),
indices=tensor([4, 3, 2]))
>>> torch.topk(x, 3, 0, largest=False)
torch.return_types.topk(
values=tensor([1, 2, 3]),
indices=tensor([0, 1, 2]))

以上这篇Pytorch学习之torch用法----比较操作(Comparison Ops)就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python中文字符串截取问题
Jun 15 Python
python PIL模块与随机生成中文验证码
Feb 27 Python
python+requests+unittest API接口测试实例(详解)
Jun 10 Python
基于Pandas读取csv文件Error的总结
Jun 15 Python
python远程调用rpc模块xmlrpclib的方法
Jan 11 Python
详解python selenium 爬取网易云音乐歌单名
Mar 28 Python
python 求1-100之间的奇数或者偶数之和的实例
Jun 11 Python
Python线程指南分享
Nov 19 Python
Python threading.local代码实例及原理解析
Mar 16 Python
Python实现常见的几种加密算法(MD5,SHA-1,HMAC,DES/AES,RSA和ECC)
May 09 Python
Python大批量搜索引擎图像爬虫工具详解
Nov 16 Python
python 实现图片批量压缩的示例
Dec 18 Python
PyTorch的torch.cat用法
Jun 28 #Python
使用pytorch 筛选出一定范围的值
Jun 28 #Python
解析python 中/ 和 % 和 //(地板除)
Jun 28 #Python
pytorch 常用函数 max ,eq说明
Jun 28 #Python
浅谈pytorch中torch.max和F.softmax函数的维度解释
Jun 28 #Python
Python turtle库的画笔控制说明
Jun 28 #Python
使用python修改文件并立即写回到原始位置操作(inplace读写)
Jun 28 #Python
You might like
PHP发明人谈MVC和网站设计架构 貌似他不支持php用mvc
2011/06/04 PHP
PHP中CURL的CURLOPT_POSTFIELDS参数使用细节
2014/03/17 PHP
实例详解PHP中html word 互转的方法
2016/01/28 PHP
php微信公众平台开发(一) 配置接口
2016/12/06 PHP
jQuery实现仿路边灯箱广告图片轮播效果
2015/04/15 Javascript
javascript简单实现滑动菜单效果的方法
2015/07/27 Javascript
jquery.form.js框架实现文件上传功能案例解析(springmvc)
2016/05/26 Javascript
Three.js学习之文字形状及自定义形状
2016/08/01 Javascript
JS实现图片剪裁并预览效果
2016/08/12 Javascript
jQuery层级选择器实例代码
2017/02/06 Javascript
vue.js 获取当前自定义属性值
2017/06/01 Javascript
基于Vue中点击组件外关闭组件的实现方法
2018/03/06 Javascript
Javasript设计模式之链式调用详解
2018/04/26 Javascript
D3.js的基础部分之数组的处理数组的排序和求值(v3版本)
2019/05/09 Javascript
送你43道JS面试题(收藏)
2019/06/17 Javascript
js实现整体缩放页面适配移动端
2020/03/31 Javascript
vue cli3适配所有端方案的实现
2020/04/13 Javascript
[01:57]2018年度DOTA2最具潜力解说-完美盛典
2018/12/16 DOTA
Linux下用Python脚本监控目录变化代码分享
2015/05/21 Python
使用matplotlib中scatter方法画散点图
2019/03/19 Python
Python Numpy库datetime类型的处理详解
2019/07/13 Python
python 利用jinja2模板生成html代码实例
2019/10/10 Python
python3.6中anaconda安装sklearn踩坑实录
2020/07/28 Python
python mock测试的示例
2020/10/19 Python
python 实现socket服务端并发的四种方式
2020/12/14 Python
用Python制作音乐海报
2021/01/26 Python
HTML5实现简单图片上传所遇到的问题及解决办法
2016/01/20 HTML / CSS
银行介绍信范文
2014/01/10 职场文书
小区门卫管理制度
2014/01/29 职场文书
军训学生自我鉴定
2014/02/12 职场文书
材料专业大学毕业生自荐书
2014/07/02 职场文书
“向国旗敬礼”主题班会活动设计方案
2014/09/27 职场文书
机关作风建设自查报告
2014/10/22 职场文书
初中运动会前导词
2015/07/20 职场文书
Nginx内网单机反向代理的实现
2021/11/07 Servers
Python保存并浏览用户的历史记录
2022/04/29 Python