使用matplotlib中scatter方法画散点图


Posted in Python onMarch 19, 2019

本文实例为大家分享了用matplotlib中scatter方法画散点图的具体代码,供大家参考,具体内容如下

1、最简单的绘制方式

绘制散点图是数据分析过程中的常见需求。python中最有名的画图工具是matplotlib,matplotlib中的scatter方法可以方便实现画散点图的需求。下面我们来绘制一个最简单的散点图。

数据格式如下:

0   746403
1   1263043
2   982360
3   1202602
...

其中第一列为X坐标,第二列为Y坐标。下面我们来画图。

#!/usr/bin/env python
#coding:utf-8

import matplotlib.pyplot as plt 

def pltpicture():
 file = "xxx"                                      
 xlist = []
 ylist = []
 with open(file, "r") as f:
  for line in f.readlines():
   lines = line.strip().split()
   if len(lines) != 2 or int(lines[1]) < 100000:
    continue
   x, y = int(lines[0]), int(lines[1])
   xlist.append(x)
   ylist.append(y)

 plt.xlabel('X')
 plt.ylabel('Y')
 plt.scatter(xlist, ylist)
 plt.show()

使用matplotlib中scatter方法画散点图

2、更漂亮一些的画图方式

上面的图片比较粗糙,是最简单的方式,没有任何相关的配置项。下面我们再用另外一份数据集画出更漂亮一点的图。
数据集来自网络的公开数据集,数据格式如下:

40920   8.326976    0.953952    3
14488   7.153469    1.673904    2
26052   1.441871    0.805124    1
75136   13.147394   0.428964    1
...

第一列每年获得的飞行常客里程数;
第二列玩视频游戏所耗时间百分比;
第三列每周消费的冰淇淋公升数;
第四列为label:
1表示不喜欢的人
2表示魅力一般的人
3表示极具魅力的人

现在将每年获取的飞行里程数作为X坐标,玩视频游戏所消耗的事件百分比作为Y坐标,画出图。

from matplotlib import pyplot as plt

file = "/home/mi/wanglei/data/datingTestSet2.txt"
label1X, label1Y, label2X, label2Y, label3X, label3Y = [], [], [], [], [], []

with open(file, "r") as f:
 for line in f:
  lines = line.strip().split()
  if len(lines) != 4:
   continue
  distance, rate, label = lines[0], lines[1], lines[3]
  if label == "1":
   label1X.append(distance)
   label1Y.append(rate)

  elif label == "2":
   label2X.append(distance)
   label2Y.append(rate)

  elif label == "3":
   label3X.append(distance)
   label3Y.append(rate)

plt.figure(figsize=(8, 5), dpi=80)
axes = plt.subplot(111)

label1 = axes.scatter(label1X, label1Y, s=20, c="red")
label2 = axes.scatter(label2X, label2Y, s=40, c="green")
label3 = axes.scatter(label3X, label3Y, s=50, c="blue")

plt.xlabel("every year fly distance")
plt.ylabel("play video game rate")
axes.legend((label1, label2, label3), ("don't like", "attraction common", "attraction perfect"), loc=2)

plt.show()

最后效果图:

使用matplotlib中scatter方法画散点图

3、scatter函数详解

我们来看看scatter函数的签名:

def scatter(self, x, y, s=None, c=None, marker=None, cmap=None, norm=None,
    vmin=None, vmax=None, alpha=None, linewidths=None,
    verts=None, edgecolors=None,
    **kwargs):
  """
  Make a scatter plot of `x` vs `y`

  Marker size is scaled by `s` and marker color is mapped to `c`

  Parameters
  ----------
  x, y : array_like, shape (n, )
   Input data

  s : scalar or array_like, shape (n, ), optional
   size in points^2. Default is `rcParams['lines.markersize'] ** 2`.

  c : color, sequence, or sequence of color, optional, default: 'b'
   `c` can be a single color format string, or a sequence of color
   specifications of length `N`, or a sequence of `N` numbers to be
   mapped to colors using the `cmap` and `norm` specified via kwargs
   (see below). Note that `c` should not be a single numeric RGB or
   RGBA sequence because that is indistinguishable from an array of
   values to be colormapped. `c` can be a 2-D array in which the
   rows are RGB or RGBA, however, including the case of a single
   row to specify the same color for all points.

  marker : `~matplotlib.markers.MarkerStyle`, optional, default: 'o'
   See `~matplotlib.markers` for more information on the different
   styles of markers scatter supports. `marker` can be either
   an instance of the class or the text shorthand for a particular
   marker.

  cmap : `~matplotlib.colors.Colormap`, optional, default: None
   A `~matplotlib.colors.Colormap` instance or registered name.
   `cmap` is only used if `c` is an array of floats. If None,
   defaults to rc `image.cmap`.

  norm : `~matplotlib.colors.Normalize`, optional, default: None
   A `~matplotlib.colors.Normalize` instance is used to scale
   luminance data to 0, 1. `norm` is only used if `c` is an array of
   floats. If `None`, use the default :func:`normalize`.

  vmin, vmax : scalar, optional, default: None
   `vmin` and `vmax` are used in conjunction with `norm` to normalize
   luminance data. If either are `None`, the min and max of the
   color array is used. Note if you pass a `norm` instance, your
   settings for `vmin` and `vmax` will be ignored.

  alpha : scalar, optional, default: None
   The alpha blending value, between 0 (transparent) and 1 (opaque)

  linewidths : scalar or array_like, optional, default: None
   If None, defaults to (lines.linewidth,).

  verts : sequence of (x, y), optional
   If `marker` is None, these vertices will be used to
   construct the marker. The center of the marker is located
   at (0,0) in normalized units. The overall marker is rescaled
   by ``s``.

  edgecolors : color or sequence of color, optional, default: None
   If None, defaults to 'face'

   If 'face', the edge color will always be the same as
   the face color.

   If it is 'none', the patch boundary will not
   be drawn.

   For non-filled markers, the `edgecolors` kwarg
   is ignored and forced to 'face' internally.

  Returns
  -------
  paths : `~matplotlib.collections.PathCollection`

  Other parameters
  ----------------
  kwargs : `~matplotlib.collections.Collection` properties

  See Also
  --------
  plot : to plot scatter plots when markers are identical in size and
   color

  Notes
  -----

  * The `plot` function will be faster for scatterplots where markers
   don't vary in size or color.

  * Any or all of `x`, `y`, `s`, and `c` may be masked arrays, in which
   case all masks will be combined and only unmasked points will be
   plotted.

   Fundamentally, scatter works with 1-D arrays; `x`, `y`, `s`, and `c`
   may be input as 2-D arrays, but within scatter they will be
   flattened. The exception is `c`, which will be flattened only if its
   size matches the size of `x` and `y`.

  Examples
  --------
  .. plot:: mpl_examples/shapes_and_collections/scatter_demo.py

  """

其中具体的参数含义如下:

x,y是相同长度的数组。
s可以是标量,或者与x,y长度相同的数组,表明散点的大小。默认为20。
c即color,表示点的颜色。
marker 是散点的形状。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
使用Python编写简单网络爬虫抓取视频下载资源
Nov 04 Python
Python网络爬虫实例讲解
Apr 28 Python
python监控文件或目录变化
Jun 07 Python
python解决Fedora解压zip时中文乱码的方法
Sep 18 Python
Python实现批量检测HTTP服务的状态
Oct 27 Python
python 梯度法求解函数极值的实例
Jul 10 Python
python用match()函数爬数据方法详解
Jul 23 Python
使用 Python 清理收藏夹里已失效的网站
Dec 03 Python
Python读取csv文件实例解析
Dec 30 Python
opencv+python实现均值滤波
Feb 19 Python
浅谈Django前端后端值传递问题
Jul 15 Python
详解在Python中使用Torchmoji将文本转换为表情符号
Jul 27 Python
详解django+django-celery+celery的整合实战
Mar 19 #Python
详解Python正则表达式re模块
Mar 19 #Python
python matplotlib画图库学习绘制常用的图
Mar 19 #Python
详解python的四种内置数据结构
Mar 19 #Python
python3使用matplotlib绘制条形图
Mar 25 #Python
python3使用matplotlib绘制散点图
Mar 19 #Python
浅谈PYTHON 关于文件的操作
Mar 19 #Python
You might like
一个PHP的String类代码
2010/04/20 PHP
PHP缓存机制Output Control详解
2014/07/14 PHP
百度工程师讲PHP函数的实现原理及性能分析(一)
2015/05/13 PHP
PHP利用APC模块实现大文件上传进度条的方法
2015/10/29 PHP
Laravel使用PHPQRCODE实现生成带有LOGO的二维码图片功能示例
2017/07/07 PHP
Prototype1.6 JS 官方下载地址
2007/11/30 Javascript
在IE,Firefox,Safari,Chrome,Opera浏览器上调试javascript
2008/12/02 Javascript
jquery png 透明解决方案(推荐)
2010/08/21 Javascript
javascript for循环从入门到偏门(效率优化+奇特用法)
2012/08/01 Javascript
JavaScript修改css样式style动态改变元素样式
2013/12/16 Javascript
jQuery中get和post方法传值测试及注意事项
2014/08/08 Javascript
jQuery通过写入cookie实现更换网页背景的方法
2016/04/15 Javascript
jQuery实现的简单拖动层示例
2017/02/22 Javascript
Bootstrap组合上、下拉框简单实现代码
2017/03/06 Javascript
详解AngularJs ui-router 路由的简单介绍
2017/04/26 Javascript
javascript过滤数组重复元素的实现方法
2017/05/03 Javascript
vue-cli配置环境变量的方法
2018/07/09 Javascript
js+HTML5 canvas 实现简单的加载条(进度条)功能示例
2019/07/16 Javascript
vue中使用极验验证码的方法(附demo)
2019/12/04 Javascript
原生js实现下拉框选择组件
2021/01/20 Javascript
python+webdriver自动化环境搭建步骤详解
2019/06/03 Python
Python画图实现同一结点多个柱状图的示例
2019/07/07 Python
python数据预处理之数据标准化的几种处理方式
2019/07/17 Python
在Mac中PyCharm配置python Anaconda环境过程图解
2020/03/11 Python
解决python多线程报错:AttributeError: Can't pickle local object问题
2020/04/08 Python
python如何实现DES加密
2020/09/21 Python
Python高阶函数与装饰器函数的深入讲解
2020/11/10 Python
CSS3 3D位移translate效果实例介绍
2016/05/03 HTML / CSS
意大利奢侈品购物网站:Giglio
2018/01/05 全球购物
linux下进程间通信的方式
2013/01/23 面试题
优秀班干部事迹材料
2014/01/26 职场文书
预防传染病方案
2014/06/14 职场文书
党支部群众路线整改措施思想汇报
2014/10/10 职场文书
用Python制作灯光秀短视频的思路详解
2021/04/13 Python
关于python中模块和重载的问题
2021/11/02 Python
JavaScript的Set数据结构详解
2022/02/18 Javascript