浅谈pytorch中torch.max和F.softmax函数的维度解释


Posted in Python onJune 28, 2020

在利用torch.max函数和F.Ssoftmax函数时,对应该设置什么维度,总是有点懵,遂总结一下:

首先看看二维tensor的函数的例子:

import torch
import torch.nn.functional as F
 
input = torch.randn(3,4)
print(input)
tensor([[-0.5526, -0.0194, 2.1469, -0.2567],
    [-0.3337, -0.9229, 0.0376, -0.0801],
    [ 1.4721, 0.1181, -2.6214, 1.7721]])
 
b = F.softmax(input,dim=0) # 按列SoftMax,列和为1
print(b)
tensor([[0.1018, 0.3918, 0.8851, 0.1021],
    [0.1268, 0.1587, 0.1074, 0.1218],
    [0.7714, 0.4495, 0.0075, 0.7762]])
 
c = F.softmax(input,dim=1)  # 按行SoftMax,行和为1
print(c)
tensor([[0.0529, 0.0901, 0.7860, 0.0710],
    [0.2329, 0.1292, 0.3377, 0.3002],
    [0.3810, 0.0984, 0.0064, 0.5143]])
 
d = torch.max(input,dim=0)  # 按列取max,
print(d)
torch.return_types.max(
values=tensor([1.4721, 0.1181, 2.1469, 1.7721]),
indices=tensor([2, 2, 0, 2]))
 
e = torch.max(input,dim=1)  # 按行取max,
print(e)
torch.return_types.max(
values=tensor([2.1469, 0.0376, 1.7721]),
indices=tensor([2, 2, 3]))

下面看看三维tensor解释例子:

函数softmax输出的是所给矩阵的概率分布;

b输出的是在dim=0维上的概率分布,b[0][5][6]+b[1][5][6]+b[2][5][6]=1

a=torch.rand(3,16,20)
b=F.softmax(a,dim=0)
c=F.softmax(a,dim=1)
d=F.softmax(a,dim=2)
 
In [1]: import torch as t
In [2]: import torch.nn.functional as F
In [4]: a=t.Tensor(3,4,5)
In [5]: b=F.softmax(a,dim=0)
In [6]: c=F.softmax(a,dim=1)
In [7]: d=F.softmax(a,dim=2)
 
In [8]: a
Out[8]: 
tensor([[[-0.1581, 0.0000, 0.0000, 0.0000, -0.0344],
 
     [ 0.0000, -0.0344, 0.0000, -0.0344, 0.0000],
     [-0.0344, 0.0000, -0.0344, 0.0000, -0.0344],
     [ 0.0000, -0.0344, 0.0000, -0.0344, 0.0000]],
 
    [[-0.0344, 0.0000, -0.0344, 0.0000, -0.0344],
     [ 0.0000, -0.0344, 0.0000, -0.0344, 0.0000],
     [-0.0344, 0.0000, -0.0344, 0.0000, -0.0344],
     [ 0.0000, -0.0344, 0.0000, -0.0344, 0.0000]],
 
 
    [[-0.0344, 0.0000, -0.0344, 0.0000, -0.0344],
     [ 0.0000, -0.0344, 0.0000, -0.0344, 0.0000],
     [-0.0344, 0.0000, -0.0344, 0.0000, -0.0344],
     [ 0.0000, -0.0344, 0.0000, -0.0344, 0.0000]]])
 
In [9]: b
Out[9]: 
 
tensor([[[0.3064, 0.3333, 0.3410, 0.3333, 0.3333],
     [0.3333, 0.3333, 0.3333, 0.3333, 0.3333],
     [0.3333, 0.3333, 0.3333, 0.3333, 0.3333],
     [0.3333, 0.3333, 0.3333, 0.3333, 0.3333]],
 
    [[0.3468, 0.3333, 0.3295, 0.3333, 0.3333],
     [0.3333, 0.3333, 0.3333, 0.3333, 0.3333],
     [0.3333, 0.3333, 0.3333, 0.3333, 0.3333],
     [0.3333, 0.3333, 0.3333, 0.3333, 0.3333]],
 
    [[0.3468, 0.3333, 0.3295, 0.3333, 0.3333],
     [0.3333, 0.3333, 0.3333, 0.3333, 0.3333],
     [0.3333, 0.3333, 0.3333, 0.3333, 0.3333],
     [0.3333, 0.3333, 0.3333, 0.3333, 0.3333]]])
 
 
In [10]: b.sum()
Out[10]: tensor(20.0000)
 
In [11]: b[0][0][0]+b[1][0][0]+b[2][0][0]
Out[11]: tensor(1.0000)
 
In [12]: c.sum()
Out[12]: tensor(15.)
 
In [13]: c
Out[13]: 
tensor([[[0.2235, 0.2543, 0.2521, 0.2543, 0.2457],
 
     [0.2618, 0.2457, 0.2521, 0.2457, 0.2543],
 
     [0.2529, 0.2543, 0.2436, 0.2543, 0.2457],
 
     [0.2618, 0.2457, 0.2521, 0.2457, 0.2543]],
 
 
    [[0.2457, 0.2543, 0.2457, 0.2543, 0.2457],
 
     [0.2543, 0.2457, 0.2543, 0.2457, 0.2543],
 
     [0.2457, 0.2543, 0.2457, 0.2543, 0.2457],
 
     [0.2543, 0.2457, 0.2543, 0.2457, 0.2543]],
 
 
    [[0.2457, 0.2543, 0.2457, 0.2543, 0.2457],
 
     [0.2543, 0.2457, 0.2543, 0.2457, 0.2543],
 
     [0.2457, 0.2543, 0.2457, 0.2543, 0.2457],
 
     [0.2543, 0.2457, 0.2543, 0.2457, 0.2543]]])
 
In [14]: n=t.rand(3,4)
 
In [15]: n
Out[15]: 
 
tensor([[0.2769, 0.3475, 0.8914, 0.6845],
    [0.9251, 0.3976, 0.8690, 0.4510],
    [0.8249, 0.1157, 0.3075, 0.3799]])
 
In [16]: m=t.argmax(n,dim=0)
 
In [17]: m
Out[17]: tensor([1, 1, 0, 0])
 
In [18]: p=t.argmax(n,dim=1)
 
In [19]: p
Out[19]: tensor([2, 0, 0])
 
In [20]: d.sum()
Out[20]: tensor(12.0000)
 
In [22]: d
Out[22]: 
 
tensor([[[0.1771, 0.2075, 0.2075, 0.2075, 0.2005],
 
     [0.2027, 0.1959, 0.2027, 0.1959, 0.2027],
 
     [0.1972, 0.2041, 0.1972, 0.2041, 0.1972],
 
     [0.2027, 0.1959, 0.2027, 0.1959, 0.2027]],
 
 
    [[0.1972, 0.2041, 0.1972, 0.2041, 0.1972],
 
     [0.2027, 0.1959, 0.2027, 0.1959, 0.2027],
 
     [0.1972, 0.2041, 0.1972, 0.2041, 0.1972],
 
     [0.2027, 0.1959, 0.2027, 0.1959, 0.2027]],
 
 
    [[0.1972, 0.2041, 0.1972, 0.2041, 0.1972],
 
     [0.2027, 0.1959, 0.2027, 0.1959, 0.2027],
 
     [0.1972, 0.2041, 0.1972, 0.2041, 0.1972],
 
     [0.2027, 0.1959, 0.2027, 0.1959, 0.2027]]])
 
In [23]: d[0][0].sum()
Out[23]: tensor(1.)

补充知识:多分类问题torch.nn.Softmax的使用

为什么谈论这个问题呢?是因为我在工作的过程中遇到了语义分割预测输出特征图个数为16,也就是所谓的16分类问题。

因为每个通道的像素的值的大小代表了像素属于该通道的类的大小,为了在一张图上用不同的颜色显示出来,我不得不学习了torch.nn.Softmax的使用。

首先看一个简答的例子,倘若输出为(3, 4, 4),也就是3张4x4的特征图。

import torch
img = torch.rand((3,4,4))
print(img)

输出为:

tensor([[[0.0413, 0.8728, 0.8926, 0.0693],
     [0.4072, 0.0302, 0.9248, 0.6676],
     [0.4699, 0.9197, 0.3333, 0.4809],
     [0.3877, 0.7673, 0.6132, 0.5203]],
    [[0.4940, 0.7996, 0.5513, 0.8016],
     [0.1157, 0.8323, 0.9944, 0.2127],
     [0.3055, 0.4343, 0.8123, 0.3184],
     [0.8246, 0.6731, 0.3229, 0.1730]],
    [[0.0661, 0.1905, 0.4490, 0.7484],
     [0.4013, 0.1468, 0.2145, 0.8838],
     [0.0083, 0.5029, 0.0141, 0.8998],
     [0.8673, 0.2308, 0.8808, 0.0532]]])

我们可以看到共三张特征图,每张特征图上对应的值越大,说明属于该特征图对应类的概率越大。

import torch.nn as nn
sogtmax = nn.Softmax(dim=0)
img = sogtmax(img)
print(img)

输出为:

tensor([[[0.2780, 0.4107, 0.4251, 0.1979],
     [0.3648, 0.2297, 0.3901, 0.3477],
     [0.4035, 0.4396, 0.2993, 0.2967],
     [0.2402, 0.4008, 0.3273, 0.4285]],
    [[0.4371, 0.3817, 0.3022, 0.4117],
     [0.2726, 0.5122, 0.4182, 0.2206],
     [0.3423, 0.2706, 0.4832, 0.2522],
     [0.3718, 0.3648, 0.2449, 0.3028]],
    [[0.2849, 0.2076, 0.2728, 0.3904],
     [0.3627, 0.2581, 0.1917, 0.4317],
     [0.2543, 0.2898, 0.2175, 0.4511],
     [0.3880, 0.2344, 0.4278, 0.2686]]])

可以看到,上面的代码对每张特征图对应位置的像素值进行Softmax函数处理, 图中标红位置加和=1,同理,标蓝位置加和=1。

我们看到Softmax函数会对原特征图每个像素的值在对应维度(这里dim=0,也就是第一维)上进行计算,将其处理到0~1之间,并且大小固定不变。

print(torch.max(img,0))

输出为:

torch.return_types.max(
values=tensor([[0.4371, 0.4107, 0.4251, 0.4117],
    [0.3648, 0.5122, 0.4182, 0.4317],
    [0.4035, 0.4396, 0.4832, 0.4511],
    [0.3880, 0.4008, 0.4278, 0.4285]]),
indices=tensor([[1, 0, 0, 1],
    [0, 1, 1, 2],
    [0, 0, 1, 2],
    [2, 0, 2, 0]]))

可以看到这里3x4x4变成了1x4x4,而且对应位置上的值为像素对应每个通道上的最大值,并且indices是对应的分类。

清楚理解了上面的流程,那么我们就容易处理了。

看具体案例,这里输出output的大小为:16x416x416.

output = torch.tensor(output)
 
sm = nn.Softmax(dim=0)
output = sm(output)
 
mask = torch.max(output,0).indices.numpy()
 
# 因为要转化为RGB彩色图,所以增加一维
rgb_img = np.zeros((output.shape[1], output.shape[2], 3))
for i in range(len(mask)):
  for j in range(len(mask[0])):
    if mask[i][j] == 0:
      rgb_img[i][j][0] = 255
      rgb_img[i][j][1] = 255
      rgb_img[i][j][2] = 255
    if mask[i][j] == 1:
      rgb_img[i][j][0] = 255
      rgb_img[i][j][1] = 180
      rgb_img[i][j][2] = 0
    if mask[i][j] == 2:
      rgb_img[i][j][0] = 255
      rgb_img[i][j][1] = 180
      rgb_img[i][j][2] = 180
    if mask[i][j] == 3:
      rgb_img[i][j][0] = 255
      rgb_img[i][j][1] = 180
      rgb_img[i][j][2] = 255
    if mask[i][j] == 4:
      rgb_img[i][j][0] = 255
      rgb_img[i][j][1] = 255
      rgb_img[i][j][2] = 180
    if mask[i][j] == 5:
      rgb_img[i][j][0] = 255
      rgb_img[i][j][1] = 255
      rgb_img[i][j][2] = 0
    if mask[i][j] == 6:
      rgb_img[i][j][0] = 255
      rgb_img[i][j][1] = 0
      rgb_img[i][j][2] = 180
    if mask[i][j] == 7:
      rgb_img[i][j][0] = 255
      rgb_img[i][j][1] = 0
      rgb_img[i][j][2] = 255
    if mask[i][j] == 8:
      rgb_img[i][j][0] = 255
      rgb_img[i][j][1] = 0
      rgb_img[i][j][2] = 0
    if mask[i][j] == 9:
      rgb_img[i][j][0] = 180
      rgb_img[i][j][1] = 0
      rgb_img[i][j][2] = 0
    if mask[i][j] == 10:
      rgb_img[i][j][0] = 180
      rgb_img[i][j][1] = 255
      rgb_img[i][j][2] = 255
    if mask[i][j] == 11:
      rgb_img[i][j][0] = 180
      rgb_img[i][j][1] = 0
      rgb_img[i][j][2] = 180
    if mask[i][j] == 12:
      rgb_img[i][j][0] = 180
      rgb_img[i][j][1] = 0
      rgb_img[i][j][2] = 255
    if mask[i][j] == 13:
      rgb_img[i][j][0] = 180
      rgb_img[i][j][1] = 255
      rgb_img[i][j][2] = 180
    if mask[i][j] == 14:
      rgb_img[i][j][0] = 0
      rgb_img[i][j][1] = 180
      rgb_img[i][j][2] = 255
    if mask[i][j] == 15:
      rgb_img[i][j][0] = 0
      rgb_img[i][j][1] = 0
      rgb_img[i][j][2] = 0
 
cv2.imwrite('output.jpg', rgb_img)

最后保存得到的图为:

浅谈pytorch中torch.max和F.softmax函数的维度解释

以上这篇浅谈pytorch中torch.max和F.softmax函数的维度解释就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python中使用Beautiful Soup库的超详细教程
Apr 30 Python
详解如何用OpenCV + Python 实现人脸识别
Oct 20 Python
python保存二维数组到txt文件中的方法
Nov 15 Python
Python 隐藏输入密码时屏幕回显的实例
Feb 19 Python
python3对接mysql数据库实例详解
Apr 30 Python
python实现几种归一化方法(Normalization Method)
Jul 31 Python
有关Tensorflow梯度下降常用的优化方法分享
Feb 04 Python
python通过matplotlib生成复合饼图
Feb 06 Python
Python HTTP下载文件并显示下载进度条功能的实现
Apr 02 Python
Python telnet登陆功能实现代码
Apr 16 Python
一个非常简单好用的Python图形界面库(PysimpleGUI)
Dec 28 Python
python 可视化库PyG2Plot的使用
Jan 21 Python
Python turtle库的画笔控制说明
Jun 28 #Python
使用python修改文件并立即写回到原始位置操作(inplace读写)
Jun 28 #Python
python删除指定列或多列单个或多个内容实例
Jun 28 #Python
Python3实现建造者模式的示例代码
Jun 28 #Python
Python工程师必考的6个经典面试题
Jun 28 #Python
Python drop方法删除列之inplace参数实例
Jun 27 #Python
对python pandas中 inplace 参数的理解
Jun 27 #Python
You might like
php curl post 时出现的问题解决
2014/01/30 PHP
php检测数组长度函数sizeof与count用法
2014/11/17 PHP
php中print(),print_r(),echo()的区别详解
2014/12/01 PHP
详解PHP的Laravel框架中Eloquent对象关系映射使用
2016/02/26 PHP
ThinkPHP框架搭建及常见问题(XAMPP安装失败、Apache/MySQL启动失败)
2016/04/15 PHP
PHP微信支付开发实例
2016/06/22 PHP
laravel 解决crontab不执行的问题
2019/10/22 PHP
基于jquery的高性能td和input切换并可修改内容实现代码
2011/01/09 Javascript
node.js require() 源码解读
2015/12/13 Javascript
AngularJS内建服务$location及其功能详解
2016/07/01 Javascript
深入解析Javascript闭包的功能及实现方法
2016/07/10 Javascript
避免jQuery名字冲突 noConflict()方法
2016/07/30 Javascript
再谈Javascript中的异步以及如何异步
2016/08/19 Javascript
JavaScript 随机验证码的生成实例代码
2016/09/22 Javascript
Vue 过渡(动画)transition组件案例详解
2017/01/22 Javascript
ES6教程之for循环和Map,Set用法分析
2017/04/10 Javascript
通过js修改input、select默认字体颜色
2017/04/19 Javascript
Angular中实现树形结构视图实例代码
2017/05/05 Javascript
全面解析jQuery中的$(window)与$(document)的用法区别
2017/08/15 jQuery
vue watch普通监听和深度监听实例详解(数组和对象)
2018/08/16 Javascript
关于JavaScript中高阶函数的魅力详解
2018/09/07 Javascript
使用layui实现树形结构的方法
2019/09/20 Javascript
java遇到微信小程序 "支付验证签名失败" 问题解决
2019/12/22 Javascript
[02:43]2018DOTA2亚洲邀请赛主赛事首日TOP5
2018/04/04 DOTA
Python的Django框架中的select_related函数对QuerySet 查询的优化
2015/04/01 Python
利用Python代码实现数据可视化的5种方法详解
2018/03/25 Python
Python爬虫实现验证码登录代码实例
2019/05/10 Python
Python如何使用paramiko模块连接linux
2020/03/18 Python
python实现FTP文件传输的方法(服务器端和客户端)
2020/03/20 Python
局域网定义和特性
2016/01/23 面试题
小学生开学感言
2014/02/28 职场文书
安全资料员岗位职责范本
2014/06/28 职场文书
晚会开幕词
2015/01/28 职场文书
故意伤害辩护词
2015/05/21 职场文书
python3 sqlite3限制条件查询的操作
2021/04/07 Python
PHP实现两种排课方式
2021/06/26 PHP