深入浅析Python科学计算库Scipy及安装步骤


Posted in Python onOctober 12, 2019

一、Scipy 入门

1.1、Scipy 简介及安装

官网:http://www.scipy.org/SciPy

安装:在C:\Python27\Scripts下打开cmd执行:

执行:pip install scipy

1.2、安装Anaconda及环境搭建(举例演示)

创建环境:conda create -n env_name python=3.6

示例:   conda create -n Py_36 python=3.6  #创建名为Py_367的环境

列出所有环境:conda info -e

进入环境:   source activate Py_36  (OSX/LINUX系统)

            activate Py_36          (windows系统)

1.3、jupyter 安装

jupyter简介:jupyter(Jupyter Notebook)是一个交互式笔记本

            支持运行40多种编程语言

            数据清理和转换,数值模拟,统计建模,机器学习等

jupyter 安装:conda install jupyter notebook

启动 jupyter:激活相应环境

在控制台执行 :jupyter notebook

notebook服务器运行地址:http://localhost:8888   

                新建(notebook,文本文件,文件夹)

关闭notebook:ctrl+c执行两次

jupyter notebook 使用:

    快捷键:shift+Enter     运行本单元,选中下个单元

           Ctrl+Enter      运行本单元,在其下方插入新单元
            Y              单元进入代码状态
            M              单元进入markdown状态
            A              在上方插入新单元
            B              在下方插入新单元
            X              剪切选中单元
            Shift+V        在上方粘贴单元      

1.4、scipy的'hello word'

需求:将一个多维数组保存a.mat文件,后加载该mat文件,获取内容并打印

步骤1:导入scipy需要的模块

    from scipy import io    #(需要使用的模块)

步骤2:利用savemat保存数据

io.savemat(file_name,mdict)
  io.savemat('a.mat',{''array:a})

步骤3:利用 loadmat载入数据

io.loadmat(file_name)
  data = io.loadmat('a.mat')

举例1:

from scipy import io    #导入io
import numpy as np    #导入numpy并命名为np 
arr = np.array([1,2,3,4,5,6])
io.savemat('test.mat',{'arr1':arr})
loadArr=io.loadmat('test.mat')

举例2

from matplotlib import pyplot as plt
from scipy import io
import numpy as np
matrix1 = np.arange(1,10).reshape(3,3)   #创建矩阵
io.savemat("matrix1.mat", {"array": matrix1}) #保存矩阵文件
data=io.loadmat('matrix1.mat')     #读取矩阵文件
print (data["array"])       #输出矩阵

p1 = np.random.normal(size = 10000) #新建随机数
plt.hist(p1)       #绘制柱形图
plt.show()       #显示

二、利用Scipy实现统计功能

需求:用Scipy的scipy.stats中的统计函数分析随机数
stats提供了产生连续性分布的函数
均匀分布(uniform)
                x=stats.uniform.rvs(size = 20) 生成20个[0,1]均匀分布随机数
-正态分布(norm)
                x=stats.norm.rvs(size = 20) 生成20个正态分布随机数
-贝塔分布(beta)
                x=stats.beta.rvs(size=20,a=3,b=4)生成20个服从参数a=3,b=4贝塔分布随机数
-离散分布
-伯努利分布(Bernoulli)
-几何分布(geom)
-泊松分布(poisson)
x=stats.poisson.rvs(0.6,loc=0,size = 20)生成20个服从泊松分布随机数

三、计算随机数均值和标准差

stats.norm.fit :利用正态分布去拟合生成的数据,得到其均值和标准差

四、计算随机数的偏度

1.概念:
                偏度(skewness)描述的是概率分布的偏度(非对称)程度。
                有两个返回值,第二个为p-value,即数据集服从正态分布的概率(0~1)

2 利用 stats.skewtest()计算偏度

五、计算随机数的峰度

1 概念:峰度(kurtosis)-描述的是概率分布曲线陡峭程度
2 利用 stats.kurtosis() 计算峰度
3 正态分布峰度值为3,excess_k为0
              低阔峰(platykurtic) 相对于正态分布来说更扁平 excess_k<0
              高狭峰(leptokurtic) 相对于正态分布来说更陡峭 excess_k>0

示例:(../Scipy/Test01/test1)

import numpy as np
from scipy import stats
import matplotlib.pyplot as plt

arr = stats.norm.rvs(size=900)
(mean,std) = stats.norm.fit(arr)
print('平均值',mean)  #mean平均值
print('std标准差',std)  #std标准差
(skewness,pvalue1) = stats.skewtest(arr)
print('偏度值') 
print(skewness)
print('符合正态分布数据的概率为')
print(pvalue1)
(Kurtosistest,pvalue2) = stats.kurtosistest(arr)
print('Kurtosistest',Kurtosistest) #峰度
print('pvalue2',pvalue2)
(Normltest,pvalue3) = stats.normaltest(arr)
print('Normltest',Normltest)   #服从正太分布度
print('pvalue3',pvalue3)
num = stats.scoreatpercentile(arr,95) #某一百分比处的数值
print('在95%处的数值:')    #某一百分比处的数值
print num
indexPercent = stats.percentileofscore(arr,1) #某一数值处的百分比
print ('在数值1处的百分比:')     #某一数值处的百分比
print indexPercent
plt.hist(arr) #设置直方图
plt.show()  #显示图

六、正态分布程度检验

1 正态性检验(normality test),同样返回两个值,第二个返回p-values
2 利用 检验      stats.normaltest()
        一般情况     pvalue>0.05                表示服从正态分布

七、计算数据所在区域中某一百分比处的数值

1 利用scoreatpercentile 计算在某一百分比位置的数值
                格式:scoreatpercentile (数据集、百分比)
                                   stats.scoreatpercentile(name_arr,percent)
2 示例:求出95%所在位置的数值

              

num = stats.scoreatpercentile(arr,95) 
    print num

八、从某数值出发找到对应的百分比

利用percentileofscore计算在某数值对应的百分比
                格式:percentileofscore(数据集,数值)
                示例:indexPercent = stats.percentileofscore(arr,1)

九、直方图显示

import matplotlib.pyplot as plt

在Anaconda环境下(py36)C:\Users\lenovo>导入:conda install matplotlib
                plt.hist(arr) #设置直方图
                plt.show() #显示图

九、综合练习

1 求出考试分数的以下值:

均值          中位数       众数        极差          方差 
标准差        变异系数(均值/方差)       偏度          峰度

2 步骤1: 创建两个二维数组:[分数,出现次数]

arrEasy=np.array([[0,2],[2.5,4],[5,6],[7.5,9],[10,13],[12.5,16],[15,19],[17.5,23],
    [20,27],[22.5,31],[25,35],[27.5,40],[30,53],[32.5,68],[35,90],
    [37.5,110],[40,130],[42.5,148],[45,165],[47.5,182],[50,195],
    [52.5,208],[55,217],[57.5,226],[60,334],[62.5,342],[65,349],
    [67.5,500],[70,511],[72.5,300],[75,200],[77.5,80],[80,20]])
arrDiff=np.array([[0,20],[2.5,30],[5,45],[7.5,70],[10,100],[12.5,135],[15,170],
    [17.5,205],[20,226],[22.5,241],[25,251],[27.5,255],[30,256],
    [32.5,253],[35,249],[37.5,242],[40,234],[42.5,226],[45,217],
    [47.5,208],[50,195],[52.5,182],[55,165],[57.5,148],[60,130],
    [62.5,110],[65,40],[67.5,30],[70,20],[72.5,5],[75,5],[77.5,0],[80,0]])

步骤2:创建函数,将传入的多维数组扁平化->变成一维数组

方法1:

def createScore(arr):
 score = []   #所有学员分数
 row = arr.shape[0]
 for i in np.arange(0,row):
  for j in np.arange(0,int(arr[i][1])):
  score.append(arr[i][1]))
 score = np.array(score)
 return score

方法2

score_Easy, num_Easy = arrEasy[:,0],arrEasy[:,1] #所有行第一列;所有行第二列
score_Diff, num_Diff = arrDiff[:,0],arrDiff[:,1] #同上
print (score_Easy,num_Easy )
print (score_Diff,num_Diff )

步骤3:创建函数,根据传入数组,对其进行统计

def calStatValue(score):
 #集中趋势度量
 print('均值')
 print(np.mean(score))
 print('中位数')
 print(np.median(score))
 print('众数')
 print(stats.mode(score))
 #离散趋势度量
 print('极差')
 print(np.ptp(score))
 print('方差')
 print(np.var(score))
 print('标准差')
 print(np.std(score))
 print('变异系数')
 print(np.mean(score)/np.std(score))
 #偏度与峰度的度量
 print('偏度')
 print(stats.skewness(score))
 print('峰度')
 print(stats.Kurtosis(score))

步骤4:创建函数,做一个简单的箱线图/柱形图

def drawGraghic(score)
 plt.boxplot([score],labels['score']) #箱线图
 plt.title('箱线图')
 plt.show()
 plt.hist(score,100)
 plt.show()

步骤5:

步骤6:

案例完整代码:

import numpy as np
from scipy import stats
import matplotlib.pyplot as plt
def createScore(arr):
 score = []     #所有学员分数
 row = arr.shape[0]   #获取多少组元素
 for i in np.arange(0,row): #遍历所有元素组
  for j in np.arange(0,int(arr[i][1])):#从0开始填充次数,第i行第1列
   score.append(arr[i][0]))
 score = np.array(score)
 return score
_________________________________
使用切片获取分数
score_Easy, num_Easy = arrEasy[:,0],arrEasy[:,1] #所有行第一列;所有行第二列
score_Diff, num_Diff = arrDiff[:,0],arrDiff[:,1] #同上
print (score_Easy,num_Easy)   #查看分数,人数
print (score_Diff,num_Diff)   #同上
All_score_Easy = np.repeat(list(score_Easy),list(num_Easy)) #所有分数
All_score_Diff = np.repeat(list(score_Diff),list(num_Diff)) #所有分数
________________________________
def createOneScore():
 arrEasy=np.array([[0,2],[2.5,4],[5,6],[7.5,9],[10,13],[12.5,16],[15,19],[17.5,23],
    [20,27],[22.5,31],[25,35],[27.5,40],[30,53],[32.5,68],[35,90],
    [37.5,110],[40,130],[42.5,148],[45,165],[47.5,182],[50,195],
    [52.5,208],[55,217],[57.5,226],[60,334],[62.5,342],[65,349],
    [67.5,500],[70,511],[72.5,300],[75,200],[77.5,80],[80,20]])
 return createScore(arrOne)
def createTwoScore():  
 arrDiff=np.array([[0,20],[2.5,30],[5,45],[7.5,70],[10,100],[12.5,135],[15,170],
    [17.5,205],[20,226],[22.5,241],[25,251],[27.5,255],[30,256],
    [32.5,253],[35,249],[37.5,242],[40,234],[42.5,226],[45,217],
    [47.5,208],[50,195],[52.5,182],[55,165],[57.5,148],[60,130],
    [62.5,110],[65,40],[67.5,30],[70,20],[72.5,5],[75,5],[77.5,0],[80,0]])
 return createScore(arrTwo)
def calStatValue(score):
 #集中趋势度量
 print('均值')
 print(np.mean(score))
 print('中位数')
 print(np.median(score))
 print('众数')
 print(stats.mode(score))
 #离散趋势度量
 print('极差')
 print(np.ptp(score))
 print('方差')
 print(np.var(score))
 print('标准差')
 print(np.std(score))
 print('变异系数')
 print(np.mean(score)/np.std(score))
 #偏度与峰度的度量
 (skewness,pvalue1) = stats.skewtest(score) 
 print('偏度')
 print(stats.skewness(score))
 (Kurtosistest,pvalue2) = stats.kurtosistest(arr)
 print('峰度')
 print(stats.Kurtosis(score)) 
 return
#画图
def drawGraghic(score)
 plt.boxplot([score],labels['score']) #箱线图
 plt.title('箱线图')
 plt.show()
 plt.hist(score,100)
 plt.show()
 return

          总结

以上所述是小编给大家介绍的Python科学计算库—Scipy,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对三水点靠木网站的支持!
如果你觉得本文对你有帮助,欢迎转载,烦请注明出处,谢谢!

Python 相关文章推荐
使用python装饰器验证配置文件示例
Feb 24 Python
python通过函数属性实现全局变量的方法
May 16 Python
利用Python脚本生成sitemap.xml的实现方法
Jan 31 Python
Python入门之后再看点什么好?
Mar 05 Python
对django中render()与render_to_response()的区别详解
Oct 16 Python
Django跨域请求CSRF的方法示例
Nov 11 Python
对Python发送带header的http请求方法详解
Jan 02 Python
Python面向对象类编写细节分析【类,方法,继承,超类,接口等】
Jan 05 Python
python爬虫实现中英翻译词典
Jun 25 Python
使用pyecharts生成Echarts网页的实例
Aug 12 Python
简单了解python协程的相关知识
Aug 31 Python
利用pandas向一个csv文件追加写入数据的实现示例
Apr 23 Python
Django1.11配合uni-app发起微信支付的实现
Oct 12 #Python
Python数据处理篇之Sympy系列(五)---解方程
Oct 12 #Python
详解Python绘图Turtle库
Oct 12 #Python
Python中的list与tuple集合区别解析
Oct 12 #Python
Python 生成器,迭代,yield关键字,send()传参给yield语句操作示例
Oct 12 #Python
Python 类,property属性(简化属性的操作),@property,property()用法示例
Oct 12 #Python
python获取全国城市pm2.5、臭氧等空气质量过程解析
Oct 12 #Python
You might like
二招解决php乱码问题
2012/03/25 PHP
CodeIgniter自定义控制器MY_Controller用法分析
2016/01/20 PHP
如何解决PHP使用mysql_query查询超大结果集超内存问题
2016/03/14 PHP
laravel-admin 实现在指定的相册下添加照片
2019/10/21 PHP
Avengerls vs KG BO3 第一场2.18
2021/03/10 DOTA
js函数获取html中className所在的内容并去除标签
2013/09/08 Javascript
解析prototype,JQuery中跳出each循环的方法
2013/12/12 Javascript
js判断iframe内的网页是否滚动到底部触发事件
2014/03/18 Javascript
javascript浏览器兼容教程之事件处理
2014/06/09 Javascript
使用JavaScript 实现的人脸检测
2015/03/24 Javascript
JS判断元素是否在数组内的实现代码
2016/03/30 Javascript
当jquery ajax遇上401请求的解决方法
2016/05/19 Javascript
javascript正则表达式之分组概念与用法实例
2016/06/16 Javascript
Vue 实现双向绑定的四种方法
2018/03/16 Javascript
微信小程序使用map组件实现获取定位城市天气或者指定城市天气数据功能
2019/01/22 Javascript
浅谈vue3中effect与computed的亲密关系
2019/10/10 Javascript
webpack是如何实现模块化加载的方法
2019/11/06 Javascript
JavaScript eval()函数定义及使用方法详解
2020/07/07 Javascript
[03:58]2014DOTA2国际邀请赛 龙宝赛后解密DK获胜之道
2014/07/14 DOTA
[00:55]深扒TI7聊天轮盘语音出处3
2017/05/11 DOTA
Python中endswith()函数的基本使用
2015/04/07 Python
Python开发的HTTP库requests详解
2017/08/29 Python
使用python 打开文件并做匹配处理的实例
2019/01/02 Python
使用python实现ftp的文件读写方法
2019/07/02 Python
详解python3中用HTMLTestRunner.py报ImportError: No module named 'StringIO'如何解决
2019/08/27 Python
Python二维数组实现求出3*3矩阵对角线元素的和示例
2019/11/29 Python
使用pyqt 实现重复打开多个相同界面
2019/12/13 Python
基于Python绘制个人足迹地图
2020/06/01 Python
Python3读取和写入excel表格数据的示例代码
2020/06/09 Python
python实现单机五子棋
2020/08/28 Python
python 如何引入协程和原理分析
2020/11/30 Python
小程序canvas中文字设置居中锚点
2019/04/16 HTML / CSS
物控部经理职务说明书
2014/02/25 职场文书
取保候审保证书
2014/04/30 职场文书
百年校庆宣传标语口号
2015/12/26 职场文书
MySQL详解进行JDBC编程与增删改查方法
2022/06/16 MySQL