Java 常见的限流算法详细分析并实现


Posted in Java/Android onApril 07, 2022

为什么要限流

在保证可用的情况下尽可能多增加进入的人数,其余的人在排队等待,或者返回友好提示,保证里面的进行系统的用户可以正常使用,防止系统雪崩。

限流算法

限流算法很多,常见的有三类,分别是 计数器算法 、漏桶算法、令牌桶算法 。

(1)计数器:

          在一段时间间隔内,处理请求的最大数量固定,超过部分不做处理。

(2)漏桶:

          漏桶大小固定,处理速度固定,但请求进入速度不固定(在突发情况请求过多时,会丢弃过多的请求)。

(3)令牌桶:

          令牌桶的大小固定,令牌的产生速度固定,但是消耗令牌(即请求)速度不固定(可以应对一些某些时间请求过多的情况);每个请求都会从令牌桶中取出令牌,如果没有令牌则丢弃该次请求。

计数器限流

在一段时间间隔内,处理请求的最大数量固定,超过部分不做处理。

举个例子,比如我们规定对于A接口,我们1分钟的访问次数不能超过100次。

那么我们可以这么做:

在一开 始的时候,我们可以设置一个计数器counter,每当一个请求过来的时候,counter就加1,如果counter的值大于100并且该请求与第一个请求的间隔时间还在1分钟之内,那么说明请求数过多,拒绝访问;

如果该请求与第一个请求的间隔时间大于1分钟,且counter的值还在限流范围内,那么就重置 counter,就是这么简单粗暴。

Java 常见的限流算法详细分析并实现

代码实现: 

import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.atomic.AtomicInteger;
import java.util.concurrent.atomic.AtomicLong;

//计数器 限流
public class CounterLimiter {

    //起始时间
    private static long startTime = System.currentTimeMillis();

    //时间间隔1000ms
    private static long interval = 1000;

    //每个时间间隔内,限制数量
    private static long limit = 3;

    //累加器
    private static AtomicLong accumulator = new AtomicLong();

    /**
     * true 代表放行,请求可已通过
     * false 代表限制,不让请求通过
     */
    public static boolean tryAcquire() {
        long nowTime = System.currentTimeMillis();
        //判断是否在上一个时间间隔内
        if (nowTime < startTime + interval) {
            //如果还在上个时间间隔内
            long count = accumulator.incrementAndGet();
            if (count <= limit) {
                return true;
            } else {
                return false;
            }
        } else {
            //如果不在上一个时间间隔内
            synchronized (CounterLimiter.class) {
                //防止重复初始化
                if (nowTime > startTime + interval) {
                    startTime = nowTime;
                    accumulator.set(0);
                }
            }
            //再次进行判断
            long count = accumulator.incrementAndGet();
            if (count <= limit) {
                return true;
            } else {
                return false;
            }
        }
    }


    // 测试
    public static void main(String[] args) {

        //线程池,用于多线程模拟测试
        ExecutorService pool = Executors.newFixedThreadPool(10);
        // 被限制的次数
        AtomicInteger limited = new AtomicInteger(0);
        // 线程数
        final int threads = 2;
        // 每条线程的执行轮数
        final int turns = 20;
        // 同步器
        CountDownLatch countDownLatch = new CountDownLatch(threads);
        long start = System.currentTimeMillis();
        for (int i = 0; i < threads; i++) {
            pool.submit(() ->
            {
                try {

                    for (int j = 0; j < turns; j++) {

                        boolean flag = tryAcquire();
                        if (!flag) {
                            // 被限制的次数累积
                            limited.getAndIncrement();
                        }
                        Thread.sleep(200);
                    }

                } catch (Exception e) {
                    e.printStackTrace();
                }
                //等待所有线程结束
                countDownLatch.countDown();
            });
        }
        try {
            countDownLatch.await();
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        float time = (System.currentTimeMillis() - start) / 1000F;
        //输出统计结果
        System.out.println("限制的次数为:" + limited.get() +
                ",通过的次数为:" + (threads * turns - limited.get()));
        System.out.println("限制的比例为:" + (float) limited.get() / (float) (threads * turns));
        System.out.println("运行的时长为:" + time + "s");
    }

}

计数器限流的不足: 

这个算法虽然简单,但是存在临界问题,我们看下图:

Java 常见的限流算法详细分析并实现

从上图中我们可以看到,假设有一个恶意用户,他在0:59时,瞬间发送了100个请求,并且1:00又瞬间发送了100个请求,那么其实这个用户在 1秒里面,瞬间发送了200个请求。

我们刚才规定的是1分钟最多100个请求(规划的吞吐量),也就是每秒钟最多1.7个请求,用户通过在时间窗口的重置节点处突发请求, 可以瞬间超过我们的速率限制。

用户有可能通过算法的这个漏洞,瞬间压垮我们的应用。

漏桶限流

漏桶算法限流的基本原理为:水(对应请求)从进水口进入到漏桶里,漏桶以一定的速度出水(请求放行),当水流入速度过大,桶内的总水量大于桶容量会直接溢出,请求被拒绝。

大致的漏桶限流规则如下:

(1)进水口(对应客户端请求)以任意速率流入进入漏桶。

(2)漏桶的容量是固定的,出水(放行)速率也是固定的。

(3)漏桶容量是不变的,如果处理速度太慢,桶内水量会超出了桶的容量,则后面流入的水滴会溢出,表示请求拒绝。

Java 常见的限流算法详细分析并实现

⭐漏桶算法其实很简单,可以粗略的认为就是注水漏水过程,往桶中以任意速率流入水,以一定速率流出水,当水超过桶容量(capacity)则丢弃,因为桶容量是不变的,保证了整体的速率。

以一定速率流出水,

Java 常见的限流算法详细分析并实现

削峰: 有大量流量进入时,会发生溢出,从而限流保护服务可用

缓冲: 不至于直接请求到服务器, 缓冲压力

代码实现: 

import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.atomic.AtomicInteger;
import java.util.concurrent.atomic.AtomicLong;

//漏斗限流
public class LeakBucketLimiter {

    //桶的大小
    private static long capacity = 10;
    //流出速率,每秒两个
    private static long rate = 2;
    //开始时间
    private static long startTime = System.currentTimeMillis();
    //桶中剩余的水
    private static AtomicLong water = new AtomicLong();

    /**
     * true 代表放行,请求可已通过
     * false 代表限制,不让请求通过
     */
    public synchronized static boolean tryAcquire() {
        //如果桶的余量问0,直接放行
        if (water.get() == 0) {
            startTime = System.currentTimeMillis();
            water.set(1);
            return true;
        }
        //计算从当前时间到开始时间流出的水,和现在桶中剩余的水
        //桶中剩余的水
        water.set(water.get() - (System.currentTimeMillis() - startTime) / 1000 * rate);
        //防止出现<0的情况
        water.set(Math.max(0, water.get()));
        //设置新的开始时间
        startTime += (System.currentTimeMillis() - startTime) / 1000 * 1000;
        //如果当前水小于容量,表示可以放行
        if (water.get() < capacity) {
            water.incrementAndGet();
            return true;
        } else {
            return false;
        }
    }


    // 测试
    public static void main(String[] args) {

        //线程池,用于多线程模拟测试
        ExecutorService pool = Executors.newFixedThreadPool(10);
        // 被限制的次数
        AtomicInteger limited = new AtomicInteger(0);
        // 线程数
        final int threads = 2;
        // 每条线程的执行轮数
        final int turns = 20;
        // 同步器
        CountDownLatch countDownLatch = new CountDownLatch(threads);
        long start = System.currentTimeMillis();
        for (int i = 0; i < threads; i++) {
            pool.submit(() ->
            {
                try {

                    for (int j = 0; j < turns; j++) {

                        boolean flag = tryAcquire();
                        if (!flag) {
                            // 被限制的次数累积
                            limited.getAndIncrement();
                        }
                        Thread.sleep(200);
                    }

                } catch (Exception e) {
                    e.printStackTrace();
                }
                //等待所有线程结束
                countDownLatch.countDown();
            });
        }
        try {
            countDownLatch.await();
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        float time = (System.currentTimeMillis() - start) / 1000F;
        //输出统计结果
        System.out.println("限制的次数为:" + limited.get() +
                ",通过的次数为:" + (threads * turns - limited.get()));
        System.out.println("限制的比例为:" + (float) limited.get() / (float) (threads * turns));
        System.out.println("运行的时长为:" + time + "s");
    }

}

漏桶的不足: 

漏桶的出水速度固定,也就是请求放行速度是固定的。

漏桶出口的速度固定,不能灵活的应对后端能力提升。比如,通过动态扩容,后端流量从1000QPS提升到1WQPS,漏桶没有办法。

令牌桶限流

令牌桶算法中新请求到来时会从桶里拿走一个令牌,如果桶内没有令牌可拿,就拒绝服务。 当然,令牌的数量也是有上限的。令牌的数量与时间和发放速率强相关,时间流逝的时间越长,会不断往桶里加入越多的令牌,如果令牌发放的速度比申请速度快,令牌桶会放满令牌,直到令牌占满整个令牌桶。

令牌桶限流大致的规则如下:

(1)进水口按照某个速度,向桶中放入令牌。

(2)令牌的容量是固定的,但是放行的速度不是固定的,只要桶中还有剩余令牌,一旦请求过来就能申请成功,然后放行。

(3)如果令牌的发放速度,慢于请求到来速度,桶内就无牌可领,请求就会被拒绝。

总之,令牌的发送速率可以设置,从而可以对突发的出口流量进行有效的应对。

Java 常见的限流算法详细分析并实现

代码实现: 

import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.atomic.AtomicInteger;
import java.util.concurrent.atomic.AtomicLong;

//令牌桶
public class TokenBucketLimiter {
    //桶的容量
    private static long capacity = 10;
    //放入令牌的速率,每秒2个
    private static long rate = 2;
    //上次放置令牌的时间
    private static long lastTime = System.currentTimeMillis();
    //桶中令牌的余量
    private static AtomicLong tokenNum = new AtomicLong();

    /**
     * true 代表放行,请求可已通过
     * false 代表限制,不让请求通过
     */
    public synchronized static boolean tryAcquire() {
        //更新桶中剩余令牌的数量
        long now = System.currentTimeMillis();
        tokenNum.addAndGet((now - lastTime) / 1000 * rate);
        tokenNum.set(Math.min(capacity, tokenNum.get()));
        //更新时间
        lastTime += (now - lastTime) / 1000 * 1000;
        //桶中还有令牌就放行
        if (tokenNum.get() > 0) {
            tokenNum.decrementAndGet();
            return true;
        } else {
            return false;
        }
    }


    //测试
    public static void main(String[] args) {

        //线程池,用于多线程模拟测试
        ExecutorService pool = Executors.newFixedThreadPool(10);
        // 被限制的次数
        AtomicInteger limited = new AtomicInteger(0);
        // 线程数
        final int threads = 2;
        // 每条线程的执行轮数
        final int turns = 20;
        // 同步器
        CountDownLatch countDownLatch = new CountDownLatch(threads);
        long start = System.currentTimeMillis();
        for (int i = 0; i < threads; i++) {
            pool.submit(() ->
            {
                try {

                    for (int j = 0; j < turns; j++) {

                        boolean flag = tryAcquire();
                        if (!flag) {
                            // 被限制的次数累积
                            limited.getAndIncrement();
                        }
                        Thread.sleep(200);
                    }

                } catch (Exception e) {
                    e.printStackTrace();
                }
                //等待所有线程结束
                countDownLatch.countDown();
            });
        }
        try {
            countDownLatch.await();
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        float time = (System.currentTimeMillis() - start) / 1000F;
        //输出统计结果
        System.out.println("限制的次数为:" + limited.get() +
                ",通过的次数为:" + (threads * turns - limited.get()));
        System.out.println("限制的比例为:" + (float) limited.get() / (float) (threads * turns));
        System.out.println("运行的时长为:" + time + "s");
    }

}

令牌桶的好处: 

令牌桶的好处之一就是可以方便地应对 突发出口流量(后端能力的提升)。

比如,可以改变令牌的发放速度,算法能按照新的发送速率调大令牌的发放数量,使得出口突发流量能被处理。

到此这篇关于Java 常见的限流算法详细分析并实现的文章就介绍到这了,更多相关Java 限流算法内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Java/Android 相关文章推荐
分析Netty直接内存原理及应用
Jun 14 Java/Android
Java并发编程之Executor接口的使用
Jun 21 Java/Android
Feign调用传输文件异常的解决
Jun 24 Java/Android
Java常用函数式接口总结
Jun 29 Java/Android
Lombok的详细使用及优缺点总结
Jul 15 Java/Android
SpringBoot整合RabbitMQ的5种模式实战
Aug 02 Java/Android
spring注解 @PropertySource配置数据源全流程
Mar 25 Java/Android
Android RecyclerView实现九宫格效果
Jun 28 Java/Android
Java实现字符串转为驼峰格式的方法详解
Jul 07 Java/Android
前端与RabbitMQ实时消息推送未读消息小红点实现示例
Jul 23 Java/Android
java实现web实时消息推送的七种方案
Jul 23 Java/Android
Java Redisson多策略注解限流
Sep 23 Java/Android
Java 超详细讲解ThreadLocal类的使用
Java 通过手写分布式雪花SnowFlake生成ID方法详解
Java详细解析==和equals的区别
Apr 07 #Java/Android
Java 超详细讲解hashCode方法
Apr 07 #Java/Android
Java 关于String字符串原理上的问题
Apr 07 #Java/Android
Java虚拟机内存结构及编码实战分享
Java Lambda表达式常用的函数式接口
Apr 07 #Java/Android
You might like
codeigniter中测试通过的分页类示例
2014/04/17 PHP
php返回字符串中所有单词的方法
2015/03/09 PHP
示例详解Laravel重置密码代码重构
2016/08/10 PHP
如何判断php mysqli扩展类是否开启
2016/12/24 PHP
指定js可访问其它域名的cookie的方法
2007/09/18 Javascript
JavaScript实现网站访问次数统计代码
2015/08/12 Javascript
使用jquery提交form表单并自定义action的方法
2016/05/25 Javascript
AngularJS 所有版本下载地址
2016/09/14 Javascript
浅谈js键盘事件全面控制
2016/12/01 Javascript
在 Angular 中实现搜索关键字高亮示例
2017/03/21 Javascript
bootstrap modal+gridview实现弹出框效果
2017/08/15 Javascript
基于JavaScript中字符串的match与replace方法(详解)
2017/12/04 Javascript
Vue 进入/离开动画效果
2017/12/26 Javascript
利用原生js实现html5小游戏之打砖块(附源码)
2018/01/03 Javascript
vue头部导航动态点击处理方法
2018/11/02 Javascript
JavaScript中this用法学习笔记
2019/03/17 Javascript
微信小程序canvas分享海报功能
2019/10/31 Javascript
vue elementui 实现搜索栏公共组件封装的实例代码
2020/01/20 Javascript
JS的时间格式化和时间戳转换函数示例详解
2020/07/27 Javascript
JavaScript实现刮刮乐效果
2020/11/01 Javascript
Windows下python2.7.8安装图文教程
2016/05/26 Python
Python贪心算法实例小结
2018/04/22 Python
python写一个随机点名软件的实例
2019/11/28 Python
pytorch载入预训练模型后,实现训练指定层
2020/01/06 Python
Python多线程threading join和守护线程setDeamon原理详解
2020/03/18 Python
Python使用plt.boxplot() 参数绘制箱线图
2020/06/04 Python
python实现人性化显示金额数字实例详解
2020/09/25 Python
澳大利亚家具和家居用品在线:BROSA
2017/11/02 全球购物
GafasWorld哥伦比亚:网上购买眼镜
2017/11/28 全球购物
工作会议欢迎词
2014/01/16 职场文书
开朗女孩的自我评价
2014/02/10 职场文书
应聘文员自荐信范文
2014/03/11 职场文书
小学生纪念九一八事变演讲稿
2014/09/14 职场文书
学生检讨书怎么写
2015/05/07 职场文书
Python 如何解决稀疏矩阵运算
2021/05/26 Python
详解Python生成器和基于生成器的协程
2021/06/03 Python