Java 常见的限流算法详细分析并实现


Posted in Java/Android onApril 07, 2022

为什么要限流

在保证可用的情况下尽可能多增加进入的人数,其余的人在排队等待,或者返回友好提示,保证里面的进行系统的用户可以正常使用,防止系统雪崩。

限流算法

限流算法很多,常见的有三类,分别是 计数器算法 、漏桶算法、令牌桶算法 。

(1)计数器:

          在一段时间间隔内,处理请求的最大数量固定,超过部分不做处理。

(2)漏桶:

          漏桶大小固定,处理速度固定,但请求进入速度不固定(在突发情况请求过多时,会丢弃过多的请求)。

(3)令牌桶:

          令牌桶的大小固定,令牌的产生速度固定,但是消耗令牌(即请求)速度不固定(可以应对一些某些时间请求过多的情况);每个请求都会从令牌桶中取出令牌,如果没有令牌则丢弃该次请求。

计数器限流

在一段时间间隔内,处理请求的最大数量固定,超过部分不做处理。

举个例子,比如我们规定对于A接口,我们1分钟的访问次数不能超过100次。

那么我们可以这么做:

在一开 始的时候,我们可以设置一个计数器counter,每当一个请求过来的时候,counter就加1,如果counter的值大于100并且该请求与第一个请求的间隔时间还在1分钟之内,那么说明请求数过多,拒绝访问;

如果该请求与第一个请求的间隔时间大于1分钟,且counter的值还在限流范围内,那么就重置 counter,就是这么简单粗暴。

Java 常见的限流算法详细分析并实现

代码实现: 

import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.atomic.AtomicInteger;
import java.util.concurrent.atomic.AtomicLong;

//计数器 限流
public class CounterLimiter {

    //起始时间
    private static long startTime = System.currentTimeMillis();

    //时间间隔1000ms
    private static long interval = 1000;

    //每个时间间隔内,限制数量
    private static long limit = 3;

    //累加器
    private static AtomicLong accumulator = new AtomicLong();

    /**
     * true 代表放行,请求可已通过
     * false 代表限制,不让请求通过
     */
    public static boolean tryAcquire() {
        long nowTime = System.currentTimeMillis();
        //判断是否在上一个时间间隔内
        if (nowTime < startTime + interval) {
            //如果还在上个时间间隔内
            long count = accumulator.incrementAndGet();
            if (count <= limit) {
                return true;
            } else {
                return false;
            }
        } else {
            //如果不在上一个时间间隔内
            synchronized (CounterLimiter.class) {
                //防止重复初始化
                if (nowTime > startTime + interval) {
                    startTime = nowTime;
                    accumulator.set(0);
                }
            }
            //再次进行判断
            long count = accumulator.incrementAndGet();
            if (count <= limit) {
                return true;
            } else {
                return false;
            }
        }
    }


    // 测试
    public static void main(String[] args) {

        //线程池,用于多线程模拟测试
        ExecutorService pool = Executors.newFixedThreadPool(10);
        // 被限制的次数
        AtomicInteger limited = new AtomicInteger(0);
        // 线程数
        final int threads = 2;
        // 每条线程的执行轮数
        final int turns = 20;
        // 同步器
        CountDownLatch countDownLatch = new CountDownLatch(threads);
        long start = System.currentTimeMillis();
        for (int i = 0; i < threads; i++) {
            pool.submit(() ->
            {
                try {

                    for (int j = 0; j < turns; j++) {

                        boolean flag = tryAcquire();
                        if (!flag) {
                            // 被限制的次数累积
                            limited.getAndIncrement();
                        }
                        Thread.sleep(200);
                    }

                } catch (Exception e) {
                    e.printStackTrace();
                }
                //等待所有线程结束
                countDownLatch.countDown();
            });
        }
        try {
            countDownLatch.await();
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        float time = (System.currentTimeMillis() - start) / 1000F;
        //输出统计结果
        System.out.println("限制的次数为:" + limited.get() +
                ",通过的次数为:" + (threads * turns - limited.get()));
        System.out.println("限制的比例为:" + (float) limited.get() / (float) (threads * turns));
        System.out.println("运行的时长为:" + time + "s");
    }

}

计数器限流的不足: 

这个算法虽然简单,但是存在临界问题,我们看下图:

Java 常见的限流算法详细分析并实现

从上图中我们可以看到,假设有一个恶意用户,他在0:59时,瞬间发送了100个请求,并且1:00又瞬间发送了100个请求,那么其实这个用户在 1秒里面,瞬间发送了200个请求。

我们刚才规定的是1分钟最多100个请求(规划的吞吐量),也就是每秒钟最多1.7个请求,用户通过在时间窗口的重置节点处突发请求, 可以瞬间超过我们的速率限制。

用户有可能通过算法的这个漏洞,瞬间压垮我们的应用。

漏桶限流

漏桶算法限流的基本原理为:水(对应请求)从进水口进入到漏桶里,漏桶以一定的速度出水(请求放行),当水流入速度过大,桶内的总水量大于桶容量会直接溢出,请求被拒绝。

大致的漏桶限流规则如下:

(1)进水口(对应客户端请求)以任意速率流入进入漏桶。

(2)漏桶的容量是固定的,出水(放行)速率也是固定的。

(3)漏桶容量是不变的,如果处理速度太慢,桶内水量会超出了桶的容量,则后面流入的水滴会溢出,表示请求拒绝。

Java 常见的限流算法详细分析并实现

⭐漏桶算法其实很简单,可以粗略的认为就是注水漏水过程,往桶中以任意速率流入水,以一定速率流出水,当水超过桶容量(capacity)则丢弃,因为桶容量是不变的,保证了整体的速率。

以一定速率流出水,

Java 常见的限流算法详细分析并实现

削峰: 有大量流量进入时,会发生溢出,从而限流保护服务可用

缓冲: 不至于直接请求到服务器, 缓冲压力

代码实现: 

import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.atomic.AtomicInteger;
import java.util.concurrent.atomic.AtomicLong;

//漏斗限流
public class LeakBucketLimiter {

    //桶的大小
    private static long capacity = 10;
    //流出速率,每秒两个
    private static long rate = 2;
    //开始时间
    private static long startTime = System.currentTimeMillis();
    //桶中剩余的水
    private static AtomicLong water = new AtomicLong();

    /**
     * true 代表放行,请求可已通过
     * false 代表限制,不让请求通过
     */
    public synchronized static boolean tryAcquire() {
        //如果桶的余量问0,直接放行
        if (water.get() == 0) {
            startTime = System.currentTimeMillis();
            water.set(1);
            return true;
        }
        //计算从当前时间到开始时间流出的水,和现在桶中剩余的水
        //桶中剩余的水
        water.set(water.get() - (System.currentTimeMillis() - startTime) / 1000 * rate);
        //防止出现<0的情况
        water.set(Math.max(0, water.get()));
        //设置新的开始时间
        startTime += (System.currentTimeMillis() - startTime) / 1000 * 1000;
        //如果当前水小于容量,表示可以放行
        if (water.get() < capacity) {
            water.incrementAndGet();
            return true;
        } else {
            return false;
        }
    }


    // 测试
    public static void main(String[] args) {

        //线程池,用于多线程模拟测试
        ExecutorService pool = Executors.newFixedThreadPool(10);
        // 被限制的次数
        AtomicInteger limited = new AtomicInteger(0);
        // 线程数
        final int threads = 2;
        // 每条线程的执行轮数
        final int turns = 20;
        // 同步器
        CountDownLatch countDownLatch = new CountDownLatch(threads);
        long start = System.currentTimeMillis();
        for (int i = 0; i < threads; i++) {
            pool.submit(() ->
            {
                try {

                    for (int j = 0; j < turns; j++) {

                        boolean flag = tryAcquire();
                        if (!flag) {
                            // 被限制的次数累积
                            limited.getAndIncrement();
                        }
                        Thread.sleep(200);
                    }

                } catch (Exception e) {
                    e.printStackTrace();
                }
                //等待所有线程结束
                countDownLatch.countDown();
            });
        }
        try {
            countDownLatch.await();
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        float time = (System.currentTimeMillis() - start) / 1000F;
        //输出统计结果
        System.out.println("限制的次数为:" + limited.get() +
                ",通过的次数为:" + (threads * turns - limited.get()));
        System.out.println("限制的比例为:" + (float) limited.get() / (float) (threads * turns));
        System.out.println("运行的时长为:" + time + "s");
    }

}

漏桶的不足: 

漏桶的出水速度固定,也就是请求放行速度是固定的。

漏桶出口的速度固定,不能灵活的应对后端能力提升。比如,通过动态扩容,后端流量从1000QPS提升到1WQPS,漏桶没有办法。

令牌桶限流

令牌桶算法中新请求到来时会从桶里拿走一个令牌,如果桶内没有令牌可拿,就拒绝服务。 当然,令牌的数量也是有上限的。令牌的数量与时间和发放速率强相关,时间流逝的时间越长,会不断往桶里加入越多的令牌,如果令牌发放的速度比申请速度快,令牌桶会放满令牌,直到令牌占满整个令牌桶。

令牌桶限流大致的规则如下:

(1)进水口按照某个速度,向桶中放入令牌。

(2)令牌的容量是固定的,但是放行的速度不是固定的,只要桶中还有剩余令牌,一旦请求过来就能申请成功,然后放行。

(3)如果令牌的发放速度,慢于请求到来速度,桶内就无牌可领,请求就会被拒绝。

总之,令牌的发送速率可以设置,从而可以对突发的出口流量进行有效的应对。

Java 常见的限流算法详细分析并实现

代码实现: 

import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.atomic.AtomicInteger;
import java.util.concurrent.atomic.AtomicLong;

//令牌桶
public class TokenBucketLimiter {
    //桶的容量
    private static long capacity = 10;
    //放入令牌的速率,每秒2个
    private static long rate = 2;
    //上次放置令牌的时间
    private static long lastTime = System.currentTimeMillis();
    //桶中令牌的余量
    private static AtomicLong tokenNum = new AtomicLong();

    /**
     * true 代表放行,请求可已通过
     * false 代表限制,不让请求通过
     */
    public synchronized static boolean tryAcquire() {
        //更新桶中剩余令牌的数量
        long now = System.currentTimeMillis();
        tokenNum.addAndGet((now - lastTime) / 1000 * rate);
        tokenNum.set(Math.min(capacity, tokenNum.get()));
        //更新时间
        lastTime += (now - lastTime) / 1000 * 1000;
        //桶中还有令牌就放行
        if (tokenNum.get() > 0) {
            tokenNum.decrementAndGet();
            return true;
        } else {
            return false;
        }
    }


    //测试
    public static void main(String[] args) {

        //线程池,用于多线程模拟测试
        ExecutorService pool = Executors.newFixedThreadPool(10);
        // 被限制的次数
        AtomicInteger limited = new AtomicInteger(0);
        // 线程数
        final int threads = 2;
        // 每条线程的执行轮数
        final int turns = 20;
        // 同步器
        CountDownLatch countDownLatch = new CountDownLatch(threads);
        long start = System.currentTimeMillis();
        for (int i = 0; i < threads; i++) {
            pool.submit(() ->
            {
                try {

                    for (int j = 0; j < turns; j++) {

                        boolean flag = tryAcquire();
                        if (!flag) {
                            // 被限制的次数累积
                            limited.getAndIncrement();
                        }
                        Thread.sleep(200);
                    }

                } catch (Exception e) {
                    e.printStackTrace();
                }
                //等待所有线程结束
                countDownLatch.countDown();
            });
        }
        try {
            countDownLatch.await();
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        float time = (System.currentTimeMillis() - start) / 1000F;
        //输出统计结果
        System.out.println("限制的次数为:" + limited.get() +
                ",通过的次数为:" + (threads * turns - limited.get()));
        System.out.println("限制的比例为:" + (float) limited.get() / (float) (threads * turns));
        System.out.println("运行的时长为:" + time + "s");
    }

}

令牌桶的好处: 

令牌桶的好处之一就是可以方便地应对 突发出口流量(后端能力的提升)。

比如,可以改变令牌的发放速度,算法能按照新的发送速率调大令牌的发放数量,使得出口突发流量能被处理。

到此这篇关于Java 常见的限流算法详细分析并实现的文章就介绍到这了,更多相关Java 限流算法内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Java/Android 相关文章推荐
分析设计模式之模板方法Java实现
Jun 23 Java/Android
Java多条件判断场景中规则执行器的设计
Jun 26 Java/Android
总结Java对象被序列化的两种方法
Jun 30 Java/Android
JUnit5常用注解的使用
Jul 02 Java/Android
Java练习之潜艇小游戏的实现
Mar 16 Java/Android
Java 常见的限流算法详细分析并实现
Apr 07 Java/Android
教你在 Java 中实现 Dijkstra 最短路算法的方法
Apr 08 Java/Android
零基础学java之带返回值的方法的定义和调用
Apr 10 Java/Android
Java 数组的使用
May 11 Java/Android
Java异常体系非正常停止和分类
Jun 14 Java/Android
Java 中的 Lambda List 转 Map 的多种方法详解
Jul 07 Java/Android
Spring boot实现上传文件到本地服务器
Aug 14 Java/Android
Java 超详细讲解ThreadLocal类的使用
Java 通过手写分布式雪花SnowFlake生成ID方法详解
Java详细解析==和equals的区别
Apr 07 #Java/Android
Java 超详细讲解hashCode方法
Apr 07 #Java/Android
Java 关于String字符串原理上的问题
Apr 07 #Java/Android
Java虚拟机内存结构及编码实战分享
Java Lambda表达式常用的函数式接口
Apr 07 #Java/Android
You might like
PHP中ADODB类详解
2008/03/25 PHP
PHP OPCode缓存 APC详细介绍
2010/10/12 PHP
解读PHP中的垃圾回收机制
2015/08/10 PHP
PHP实现上传多文件示例代码
2017/02/20 PHP
Laravel 模型使用软删除-左连接查询-表起别名示例
2019/10/24 PHP
IE 条件注释详解总结(附实例代码)
2009/08/29 Javascript
jQuery boxy弹出层插件中文演示及使用讲解
2011/02/24 Javascript
jquery 简短几句代码实现给元素动态添加及获取提示信息
2011/09/01 Javascript
JS声明变量背后的编译原理剖析
2012/12/28 Javascript
js 左右悬浮对联广告特效代码
2014/12/12 Javascript
JavaScript的MVVM库Vue.js入门学习笔记
2016/05/03 Javascript
基于Jquery插件Uploadify实现实时显示进度条上传图片
2020/03/26 Javascript
Ajax的概述与实现过程
2016/11/18 Javascript
node作为中间服务层如何发送请求(发送请求的实现方法详解)
2018/01/02 Javascript
小程序登录态管理的方法示例
2018/11/13 Javascript
使用node搭建自动发图文微博机器人的方法
2019/03/22 Javascript
解决vue-cli项目开发运行时内存暴涨卡死电脑问题
2019/10/29 Javascript
[08:08]DOTA2-DPC中国联赛2月28日Recap集锦
2021/03/11 DOTA
Python socket C/S结构的聊天室应用实现
2014/11/30 Python
对Python3中bytes和HexStr之间的转换详解
2018/12/04 Python
Python 实现微信防撤回功能
2019/04/29 Python
python函数的万能参数传参详解
2019/07/26 Python
python写程序统计词频的方法
2019/07/29 Python
树莓派安装OpenCV3完整过程的实现
2019/10/10 Python
python判断单向链表是否包括环,若包含则计算环入口的节点实例分析
2019/10/23 Python
Python:slice与indices的用法
2019/11/25 Python
numpy:np.newaxis 实现将行向量转换成列向量
2019/11/30 Python
重新定义牛仔布,100美元以下:Warp + Weft
2018/07/25 全球购物
护理职业应聘自荐书
2013/09/29 职场文书
《那片绿绿的爬山虎》教学反思
2014/02/27 职场文书
党员群众路线自我剖析材料
2014/10/06 职场文书
2014年高三班主任工作总结
2014/12/05 职场文书
安全承诺书格式范本
2015/04/28 职场文书
环保宣传语大全
2015/07/13 职场文书
MySQL千万级数据表的优化实战记录
2021/08/04 MySQL
HTML5基础学习之文本标签控制
2022/03/25 HTML / CSS