keras自动编码器实现系列之卷积自动编码器操作


Posted in Python onJuly 03, 2020

图片的自动编码很容易就想到用卷积神经网络做为编码-解码器。在实际的操作中,

也经常使用卷积自动编码器去解决图像编码问题,而且非常有效。

下面通过**keras**完成简单的卷积自动编码。 编码器有堆叠的卷积层和池化层(max pooling用于空间降采样)组成。 对应的解码器由卷积层和上采样层组成。

@requires_authorization
# -*- coding:utf-8 -*-

from keras.layers import Input, Dense, Conv2D, MaxPooling2D, UpSampling2D
from keras.models import Model
from keras import backend as K
import os

## 网络结构 ##
input_img = Input(shape=(28,28,1)) # Tensorflow后端, 注意要用channel_last
# 编码器部分
x = Conv2D(16, (3,3), activation='relu', padding='same')(input_img)
x = MaxPooling2D((2,2), padding='same')(x)
x = Conv2D(8,(3,3), activation='relu', padding='same')(x)
x = MaxPooling2D((2,2), padding='same')(x)
x = Conv2D(8, (3,3), activation='relu', padding='same')(x)
encoded = MaxPooling2D((2,2), padding='same')(x)

# 解码器部分
x = Conv2D(8, (3,3), activation='relu', padding='same')(encoded)
x = UpSampling2D((2, 2))(x)
x = Conv2D(8, (3,3), activation='relu', padding='same')(x) 
x = UpSampling2D((2, 2))(x)
x = Conv2D(16, (3, 3), activation='relu', padding='same')(x)
x = UpSampling2D((2, 2))(x)
decoded = Conv2D(1, (3, 3), activation='sigmoid', padding='same')(x)

autoencoder = Model(input_img, decoded)
autoencoder.compile(optimizer='adam', loss='binary_crossentropy')

# 得到编码层的输出
encoder_model = Model(inputs=autoencoder.input, outputs=autoencoder.get_layer('encoder_out').output)

## 导入数据, 使用常用的手写识别数据集
def load_mnist(dataset_name):
'''
load the data
'''
  data_dir = os.path.join("./data", dataset_name)
  f = np.load(os.path.join(data_dir, 'mnist.npz'))
  train_data = f['train'].T
  trX = train_data.reshape((-1, 28, 28, 1)).astype(np.float32)
  trY = f['train_labels'][-1].astype(np.float32)
  test_data = f['test'].T
  teX = test_data.reshape((-1, 28, 28, 1)).astype(np.float32)
  teY = f['test_labels'][-1].astype(np.float32)

  # one-hot 
  # y_vec = np.zeros((len(y), 10), dtype=np.float32)
  # for i, label in enumerate(y):
  #   y_vec[i, y[i]] = 1
  # keras.utils里带的有one-hot的函数, 就直接用那个了
  return trX / 255., trY, teX/255., teY

# 开始导入数据
x_train, _ , x_test, _= load_mnist('mnist')

# 可视化训练结果, 我们打开终端, 使用tensorboard
# tensorboard --logdir=/tmp/autoencoder # 注意这里是打开一个终端, 在终端里运行

# 训练模型, 并且在callbacks中使用tensorBoard实例, 写入训练日志 http://0.0.0.0:6006
from keras.callbacks import TensorBoard
autoencoder.fit(x_train, x_train,
        epochs=50,
        batch_size=128,
        shuffle=True,
        validation_data=(x_test, x_test),
        callbacks=[TensorBoard(log_dir='/tmp/autoencoder')])

# 重建图片
import matplotlib.pyplot as plt 
decoded_imgs = autoencoder.predict(x_test)
encoded_imgs = encoder_model.predict(x_test)
n = 10
plt.figure(figsize=(20, 4))
for i in range(n):
  k = i + 1
  # 画原始图片
  ax = plt.subplot(2, n, k)
  plt.imshow(x_test[k].reshape(28, 28))
  plt.gray()
  ax.get_xaxis().set_visible(False)
  # 画重建图片
  ax = plt.subplot(2, n, k + n)
  plt.imshow(decoded_imgs[i].reshape(28, 28))
  plt.gray()
  ax.get_xaxis().set_visible(False)
  ax.get_yaxis().set_visible(False)
plt.show()

# 编码得到的特征
n = 10
plt.figure(figsize=(20, 8))
for i in range(n):
  k = i + 1
  ax = plt.subplot(1, n, k)
  plt.imshow(encoded[k].reshape(4, 4 * 8).T)
  plt.gray()
  ax.get_xaxis().set_visible(False)
  ax.get_yaxis().set_visible(False)
plt.show()

补充知识:keras搬砖系列-单层卷积自编码器

考试成绩出来了,竟然有一门出奇的差,只是有点意外。

觉得应该不错的,竟然考差了,它估计写了个随机数吧。

头文件

from keras.layers import Input,Dense
from keras.models import Model 
from keras.datasets import mnist
import numpy as np 
import matplotlib.pyplot as plt

导入数据

(X_train,_),(X_test,_) = mnist.load_data()
 
X_train = X_train.astype('float32')/255.
X_test = X_test.astype('float32')/255.
X_train = X_train.reshape((len(X_train),-1))
X_test = X_test.reshape((len(X_test),-1))

这里的X_train和X_test的维度分别为(60000L,784L),(10000L,784L)

这里进行了归一化,将所有的数值除上255.

设定编码的维数与输入数据的维数

encoding_dim = 32

input_img = Input(shape=(784,))

构建模型

encoded = Dense(encoding_dim,activation='relu')(input_img)
decoded = Dense(784,activation='relu')(encoded)
 
autoencoder = Model(inputs = input_img,outputs=decoded)
encoder = Model(inputs=input_img,outputs=encoded)
 
encoded_input = Input(shape=(encoding_dim,))
decoder_layer = autoencoder.layers[-1]
deconder = Model(inputs=encoded_input,outputs = decoder_layer(encoded_input))

模型编译

autoencoder.compile(optimizer='adadelta',loss='binary_crossentropy')

模型训练

autoencoder.fit(X_train,X_train,epochs=50,batch_size=256,shuffle=True,validation_data=(X_test,X_test))

预测

encoded_imgs = encoder.predict(X_test)

decoded_imgs = deconder.predict(encoded_imgs)

数据可视化

n = 10
for i in range(n):
 ax = plt.subplot(2,n,i+1)
 plt.imshow(X_test[i].reshape(28,28))
 plt.gray()
 ax.get_xaxis().set_visible(False)
 ax.get_yaxis().set_visible(False)
 
 ax = plt.subplot(2,n,i+1+n)
 plt.imshow(decoded_imgs[i].reshape(28,28))
 plt.gray()
 ax.get_xaxis().set_visible(False)
 ax.get_yaxis().set_visible(False)
plt.show()

完成代码

from keras.layers import Input,Dense
from keras.models import Model 
from keras.datasets import mnist
import numpy as np 
import matplotlib.pyplot as plt 
 
(X_train,_),(X_test,_) = mnist.load_data()
 
X_train = X_train.astype('float32')/255.
X_test = X_test.astype('float32')/255.
X_train = X_train.reshape((len(X_train),-1))
X_test = X_test.reshape((len(X_test),-1))
 
encoding_dim = 32
input_img = Input(shape=(784,))
 
encoded = Dense(encoding_dim,activation='relu')(input_img)
decoded = Dense(784,activation='relu')(encoded)
 
autoencoder = Model(inputs = input_img,outputs=decoded)
encoder = Model(inputs=input_img,outputs=encoded)
 
encoded_input = Input(shape=(encoding_dim,))
decoder_layer = autoencoder.layers[-1]
deconder = Model(inputs=encoded_input,outputs = decoder_layer(encoded_input))
 
autoencoder.compile(optimizer='adadelta',loss='binary_crossentropy')
autoencoder.fit(X_train,X_train,epochs=50,batch_size=256,shuffle=True,validation_data=(X_test,X_test))
 
encoded_imgs = encoder.predict(X_test)
decoded_imgs = deconder.predict(encoded_imgs)
 
##via
n = 10
for i in range(n):
 ax = plt.subplot(2,n,i+1)
 plt.imshow(X_test[i].reshape(28,28))
 plt.gray()
 ax.get_xaxis().set_visible(False)
 ax.get_yaxis().set_visible(False)
 
 ax = plt.subplot(2,n,i+1+n)
 plt.imshow(decoded_imgs[i].reshape(28,28))
 plt.gray()
 ax.get_xaxis().set_visible(False)
 ax.get_yaxis().set_visible(False)
plt.show()

以上这篇keras自动编码器实现系列之卷积自动编码器操作就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python isinstance判断对象类型
Sep 06 Python
python基础教程之python消息摘要算法使用示例
Feb 10 Python
python设置检查点简单实现代码
Jul 01 Python
Python中Random和Math模块学习笔记
May 18 Python
在Python中使用swapCase()方法转换大小写的教程
May 20 Python
python3.5 email实现发送邮件功能
May 22 Python
对python pandas 画移动平均线的方法详解
Nov 28 Python
python GUI库图形界面开发之PyQt5访问系统剪切板QClipboard类详细使用方法与实例
Feb 27 Python
Python爬虫headers处理及网络超时问题解决方案
Jun 19 Python
filter使用python3代码进行迭代元素的实例详解
Dec 03 Python
一文带你掌握Pyecharts地理数据可视化的方法
Feb 06 Python
python实现的人脸识别打卡系统
May 08 Python
Python with语句用法原理详解
Jul 03 #Python
Keras搭建自编码器操作
Jul 03 #Python
python 识别登录验证码图片功能的实现代码(完整代码)
Jul 03 #Python
python图片验证码识别最新模块muggle_ocr的示例代码
Jul 03 #Python
keras topN显示,自编写代码案例
Jul 03 #Python
python如何使用代码运行助手
Jul 03 #Python
Python 3.10 的首个 PEP 诞生,内置类型 zip() 迎来新特性(推荐)
Jul 03 #Python
You might like
php生成WAP页面
2006/10/09 PHP
关于BIG5-HKSCS的解决方法
2007/03/20 PHP
php数组的一些常见操作汇总
2011/07/17 PHP
php数组键值用法实例分析
2015/02/27 PHP
php给一组指定关键词添加span标签的方法
2015/03/31 PHP
PHP读取汉字的点阵数据
2015/06/22 PHP
CI框架实现创建自定义类库的方法
2018/12/25 PHP
JavaScript对象创建模式实例汇总
2016/10/03 Javascript
Vue组件模板形式实现对象数组数据循环为树形结构(实例代码)
2017/07/31 Javascript
使用Angular CLI快速创建Angular项目的一些基本概念和写法小结
2018/04/22 Javascript
Nodejs实现用户注册功能
2019/04/14 NodeJs
swiper Scrollbar滚动条组件详解
2019/09/08 Javascript
JavaScript函数重载操作实例浅析
2020/05/02 Javascript
js实现纯前端压缩图片
2020/11/16 Javascript
JavaScript canvas实现文字时钟
2021/01/10 Javascript
[02:30]辉夜杯主赛事第二日胜者组半决赛 CDEC.Y赛后采访
2015/12/26 DOTA
python使用scrapy解析js示例
2014/01/23 Python
python在Windows8下获取本机ip地址的方法
2015/03/14 Python
python Django批量导入不重复数据
2016/03/25 Python
Python脚本简单实现打开默认浏览器登录人人和打开QQ的方法
2016/04/12 Python
使用PyV8在Python爬虫中执行js代码
2017/02/16 Python
Python生成随机数组的方法小结
2017/04/15 Python
Python线性回归实战分析
2018/02/01 Python
python unittest实现api自动化测试
2018/04/04 Python
Python实现针对给定字符串寻找最长非重复子串的方法
2018/04/21 Python
浅谈python 中的 type(), dtype(), astype()的区别
2020/04/09 Python
python如何求100以内的素数
2020/05/27 Python
Pytorch - TORCH.NN.INIT 参数初始化的操作
2021/02/27 Python
前端面试必备之html5的新特性
2017/09/05 HTML / CSS
Reebonz中国官网:新加坡奢侈品购物网站
2017/03/17 全球购物
德国著名廉价网上药店:Shop-Apotheke
2017/07/23 全球购物
英国网上购买肉类网站:Great British Meat
2018/10/17 全球购物
卫校毕业生自我鉴定
2013/10/31 职场文书
农村改厕实施方案
2014/03/22 职场文书
刑事辩护授权委托书范本
2014/10/17 职场文书
详解CSS不受控制的position fixed
2021/05/25 HTML / CSS