python 识别登录验证码图片功能的实现代码(完整代码)


Posted in Python onJuly 03, 2020

在编写自动化测试用例的时候,每次登录都需要输入验证码,后来想把让python自己识别图片里的验证码,不需要自己手动登陆,所以查了一下识别功能怎么实现,做一下笔记。

首选导入一些用到的库,re、Image、pytesseract、selenium、time

import re # 用于正则
from PIL import Image # 用于打开图片和对图片处理
import pytesseract # 用于图片转文字
from selenium import webdriver # 用于打开网站
import time # 代码运行停顿

首先需要获取验证码图片,才能进一步识别。

创建类,定义webdriver和find_element_by_selector方法,用来打开网页和定位验证码图片的元素

class VerificationCode:
  def __init__(self):
    self.driver = webdriver.Firefox()
    self.find_element = self.driver.find_element_by_css_selector

然后打开浏览器截取验证码图片

def get_pictures(self):
    self.driver.get('http://123.255.123.3') # 打开登陆页面
    self.driver.save_screenshot('pictures.png') # 全屏截图
    page_snap_obj = Image.open('pictures.png')
    img = self.find_element('#pic') # 验证码元素位置
    time.sleep(1)
    location = img.location
    size = img.size # 获取验证码的大小参数
    left = location['x']
    top = location['y']
    right = left + size['width']
    bottom = top + size['height']
    image_obj = page_snap_obj.crop((left, top, right, bottom)) # 按照验证码的长宽,切割验证码
    image_obj.show() # 打开切割后的完整验证码
    self.driver.close() # 处理完验证码后关闭浏览器
    return image_obj

未处理前的验证码图片如下:

python 识别登录验证码图片功能的实现代码(完整代码)

未处理的验证码图片,对于python来说识别率较低,仔细看可以发现图片里有很对五颜六色扰乱识别的点,非常影响识别率。

下面对获取的验证码进行处理。

首先用convert把图片转成黑白色。设置threshold阈值,超过阈值的为黑色

def processing_image(self):
    image_obj = self.get_pictures() # 获取验证码
    img = image_obj.convert("L") # 转灰度
    pixdata = img.load()
    w, h = img.size
    threshold = 160 # 该阈值不适合所有验证码,具体阈值请根据验证码情况设置
    # 遍历所有像素,大于阈值的为黑色
    for y in range(h):
      for x in range(w):
        if pixdata[x, y] < threshold:
          pixdata[x, y] = 0
        else:
          pixdata[x, y] = 255
    return img

经过灰度处理后的图片

python 识别登录验证码图片功能的实现代码(完整代码)

然后删除一些扰乱识别的像素点。

def delete_spot(self):
    images = self.processing_image()
    data = images.getdata()
    w, h = images.size
    black_point = 0
    for x in range(1, w - 1):
      for y in range(1, h - 1):
        mid_pixel = data[w * y + x] # 中央像素点像素值
        if mid_pixel < 50: # 找出上下左右四个方向像素点像素值
          top_pixel = data[w * (y - 1) + x]
          left_pixel = data[w * y + (x - 1)]
          down_pixel = data[w * (y + 1) + x]
          right_pixel = data[w * y + (x + 1)]
          # 判断上下左右的黑色像素点总个数
          if top_pixel < 10:
            black_point += 1
          if left_pixel < 10:
            black_point += 1
          if down_pixel < 10:
            black_point += 1
          if right_pixel < 10:
            black_point += 1
          if black_point < 1:
            images.putpixel((x, y), 255)
          black_point = 0
    # images.show()
    return images

经过去除噪点处理后的图片

python 识别登录验证码图片功能的实现代码(完整代码)

最后把处理后的图片转成文字。

先设置pytesseract的路径,因为默认路径是错的,然后转换图片为文字,由于个别图片中识别会出现处理遗漏,会被识别成空格或则点或则分号什么的,所以增加了一个去除验证码中特殊字符的处理。

PS:tesseract文件下载链接

def image_str(self):
    image = self.delete_spot()
    pytesseract.pytesseract.tesseract_cmd = r"C:\Program Files\Tesseract-OCR\tesseract.exe" # 设置pyteseract路径
    result = pytesseract.image_to_string(image) # 图片转文字
    resultj = re.sub(u"([^\u4e00-\u9fa5\u0030-\u0039\u0041-\u005a\u0061-\u007a])", "", result) # 去除识别出来的特殊字符
    result_four = resultj[0:4] # 只获取前4个字符
    # print(resultj) # 打印识别的验证码
    return result_four

完整代码如下:

import re # 用于正则
from PIL import Image # 用于打开图片和对图片处理
import pytesseract # 用于图片转文字
from selenium import webdriver # 用于打开网站
import time # 代码运行停顿
 
 
class VerificationCode:
  def __init__(self):
    self.driver = webdriver.Firefox()
    self.find_element = self.driver.find_element_by_css_selector
 
  def get_pictures(self):
    self.driver.get('http://123.255.123.3') # 打开登陆页面
    self.driver.save_screenshot('pictures.png') # 全屏截图
    page_snap_obj = Image.open('pictures.png')
    img = self.find_element('#pic') # 验证码元素位置
    time.sleep(1)
    location = img.location
    size = img.size # 获取验证码的大小参数
    left = location['x']
    top = location['y']
    right = left + size['width']
    bottom = top + size['height']
    image_obj = page_snap_obj.crop((left, top, right, bottom)) # 按照验证码的长宽,切割验证码
    image_obj.show() # 打开切割后的完整验证码
    self.driver.close() # 处理完验证码后关闭浏览器
    return image_obj
 
  def processing_image(self):
    image_obj = self.get_pictures() # 获取验证码
    img = image_obj.convert("L") # 转灰度
    pixdata = img.load()
    w, h = img.size
    threshold = 160
    # 遍历所有像素,大于阈值的为黑色
    for y in range(h):
      for x in range(w):
        if pixdata[x, y] < threshold:
          pixdata[x, y] = 0
        else:
          pixdata[x, y] = 255
    return img
 
  def delete_spot(self):
    images = self.processing_image()
    data = images.getdata()
    w, h = images.size
    black_point = 0
    for x in range(1, w - 1):
      for y in range(1, h - 1):
        mid_pixel = data[w * y + x] # 中央像素点像素值
        if mid_pixel < 50: # 找出上下左右四个方向像素点像素值
          top_pixel = data[w * (y - 1) + x]
          left_pixel = data[w * y + (x - 1)]
          down_pixel = data[w * (y + 1) + x]
          right_pixel = data[w * y + (x + 1)]
          # 判断上下左右的黑色像素点总个数
          if top_pixel < 10:
            black_point += 1
          if left_pixel < 10:
            black_point += 1
          if down_pixel < 10:
            black_point += 1
          if right_pixel < 10:
            black_point += 1
          if black_point < 1:
            images.putpixel((x, y), 255)
          black_point = 0
    # images.show()
    return images
 
  def image_str(self):
    image = self.delete_spot()
    pytesseract.pytesseract.tesseract_cmd = r"C:\Program Files\Tesseract-OCR\tesseract.exe" # 设置pyteseract路径
    result = pytesseract.image_to_string(image) # 图片转文字
    resultj = re.sub(u"([^\u4e00-\u9fa5\u0030-\u0039\u0041-\u005a\u0061-\u007a])", "", result) # 去除识别出来的特殊字符
    result_four = resultj[0:4] # 只获取前4个字符
    # print(resultj) # 打印识别的验证码
    return result_four
 
if __name__ == '__main__':
  a = VerificationCode()
  a.image_str()

看评论有很多人需要tesseract.exe文件,但是由于文件过大,发邮件会出现无法下载的情况,有需要的可以在一下连接里下载tesseract.exe文件

到此这篇关于python 识别登录验证码图片(完整代码)的文章就介绍到这了,更多相关python识别登录验证码图片内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
Python中Collection的使用小技巧
Aug 18 Python
python多线程操作实例
Nov 21 Python
使用Python的PIL模块来进行图片对比
Feb 18 Python
python简单读取大文件的方法
Jul 01 Python
Python实现树莓派WiFi断线自动重连的实例代码
Mar 16 Python
Python实现输出程序执行进度百分比的方法
Sep 16 Python
PyTorch学习笔记之回归实战
May 28 Python
python取数作为临时极大值(极小值)的方法
Oct 15 Python
Python 忽略warning的输出方法
Oct 18 Python
python 生成图形验证码的方法示例
Nov 11 Python
Python递归及尾递归优化操作实例分析
Feb 01 Python
python读取多层嵌套文件夹中的文件实例
Feb 27 Python
python图片验证码识别最新模块muggle_ocr的示例代码
Jul 03 #Python
keras topN显示,自编写代码案例
Jul 03 #Python
python如何使用代码运行助手
Jul 03 #Python
Python 3.10 的首个 PEP 诞生,内置类型 zip() 迎来新特性(推荐)
Jul 03 #Python
python3 简单实现组合设计模式
Jul 02 #Python
Django Session和Cookie分别实现记住用户登录状态操作
Jul 02 #Python
django 装饰器 检测登录状态操作
Jul 02 #Python
You might like
全国中波电台频率表
2020/03/11 无线电
一贴学会PHP 新手入门教程
2009/08/03 PHP
linux下删除7天前日志的代码(php+shell)
2011/01/02 PHP
使用PHP遍历文件夹与子目录的函数代码
2011/09/26 PHP
php邮箱地址正则表达式验证
2015/11/13 PHP
PHP+redis实现的悲观锁机制示例
2018/06/12 PHP
jquery 倒计时效果实现秒杀思路
2013/09/11 Javascript
jquery $(this).attr $(this).val方法使用介绍
2013/10/08 Javascript
得到form下的所有的input的js代码
2013/11/07 Javascript
详解JS 比较两个Json对象的值是否相等的实例
2013/11/20 Javascript
JavaScript中对象属性的添加和删除示例
2014/05/12 Javascript
pace.js页面加载进度条插件
2015/09/29 Javascript
Validform表单验证总结篇
2016/10/31 Javascript
vue自定义指令实现v-tap插件
2016/11/03 Javascript
Angular在一个页面中使用两个ng-app的方法
2017/02/20 Javascript
JS表单提交验证、input(type=number) 去三角 刷新验证码
2017/06/21 Javascript
使用RN Animated做一个“添加购物车”动画的方法
2018/09/12 Javascript
vue组件通信传值操作示例
2019/01/08 Javascript
用VueJS写一个Chrome浏览器插件的实现方法
2019/02/27 Javascript
Nuxt 项目性能优化调研分析
2020/11/07 Javascript
vue解决跨域问题(推荐)
2020/11/10 Javascript
python中的字典详细介绍
2014/09/18 Python
python字符串的拼接方法总结
2019/11/18 Python
HTML5 HTMLCollection和NodeList的区别详解
2020/04/29 HTML / CSS
英国标志性奢侈品牌:Burberry
2016/07/28 全球购物
翻新二手苹果产品的网络领导者:Mac of all Trades
2017/12/19 全球购物
应届生船舶驾驶求职信
2013/10/19 职场文书
学前教育求职自荐信范文
2013/12/25 职场文书
大学生创业计划书的用途
2014/01/08 职场文书
店面销售职位的职责
2014/03/09 职场文书
环保建议书600字
2014/05/14 职场文书
2014迎国庆标语大全
2014/09/19 职场文书
2015年办公室工作总结范文
2015/03/31 职场文书
讲座通知范文
2015/04/23 职场文书
看上去很美观后感
2015/06/10 职场文书
Django模型层实现多表关系创建和多表操作
2021/07/21 Python