Python使用Opencv实现边缘检测以及轮廓检测的实现


Posted in Python onDecember 31, 2020

边缘检测

Canny边缘检测器是一种被广泛使用的算法,并被认为是边缘检测最优的算法,该方法使用了比高斯差分算法更复杂的技巧,如多向灰度梯度和滞后阈值化。

Canny边缘检测器算法基本步骤:

  • 平滑图像:通过使用合适的模糊半径执行高斯模糊来减少图像内的噪声。
  • 计算图像的梯度:这里计算图像的梯度,并将梯度分类为垂直、水平和斜对角。这一步的输出用于在下一步中计算真正的边缘。
  • 非最大值抑制:利用上一步计算出来的梯度方向,检测某一像素在梯度的正方向和负方向上是否是局部最大值,如果是,则抑制该像素(像素不属于边缘)。这是一种边缘细化技术,用最急剧的变换选出边缘点。
  • 用滞后阈值化选择边缘:最后一步,检查某一条边缘是否明显到足以作为最终输出,最后去除所有不明显的边缘。

Opencv使用Canny边缘检测相对简单,代码如下:

import cv2
import numpy as np

img = cv2.imread("hammer.jpg", 0)
cv2.imwrite("canny.jpg", cv2.Canny(img, 200, 300))
cv2.imshow("canny", cv2.imread("canny.jpg"))
cv2.waitKey()
cv2.destroyAllWindows()

运行结果:

Python使用Opencv实现边缘检测以及轮廓检测的实现

Canny函数的原型为

cv2.Canny(image, threshold1, threshold2[, edges[, apertureSize[, L2gradient ]]])

必要参数:
第一个参数是需要处理的原图像,该图像必须为单通道的灰度图;
第二个参数是滞后阈值1;
第三个参数是滞后阈值2。

轮廓检测

轮廓检测主要由cv2.findContours函数实现的。
函数的原型为

cv2.findContours(image, mode, method[, contours[, hierarchy[, offset ]]])

函数参数
第一个参数是寻找轮廓的图像;

第二个参数表示轮廓的检索模式,有四种(本文介绍的都是新的cv2接口):

  • cv2.RETR_EXTERNAL表示只检测外轮廓 。
  • cv2.RETR_LIST检测的轮廓不建立等级关系。
  • cv2.RETR_CCOMP建立两个等级的轮廓,上面的一层为外边界,里面的一层为内孔的边界信息。如果内孔内还有一个连通物体,这个物体的边界也在顶层。
  • cv2.RETR_TREE建立一个等级树结构的轮廓。

第三个参数method为轮廓的逼近方法

  • cv2.CHAIN_APPROX_NONE存储所有的轮廓点,相邻的两个点的像素位置差不超过1,即max(abs(x1-x2),abs(y2-y1))==1。
  • cv2.CHAIN_APPROX_SIMPLE压缩水平方向,垂直方向,对角线方向的元素,只保留该方向的终点坐标,例如一个矩形轮廓只需4个点来保存轮廓信息。
  • cv2.CHAIN_APPROX_TC89_L1和cv2.CHAIN_APPROX_TC89_KCOS都是使用teh-Chinl chain近似算法。

返回值

如:image, contours, hier = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

image:是原图像

contours:图像的轮廓,以列表的形式表示,每个元素都是图像中的一个轮廓。

hier:相应轮廓之间的关系。这是一个ndarray,其中的元素个数和轮廓个数相同,每个轮廓contours[i]对应4个hierarchy元素hierarchy[i][0] ~hierarchy[i][3],分别表示后一个轮廓、前一个轮廓、父轮廓、内嵌轮廓的索引编号,如果没有对应项,则该值为负数。

原图:

Python使用Opencv实现边缘检测以及轮廓检测的实现

示例一

import cv2
import numpy as np

img = cv2.pyrDown(cv2.imread("hammer.jpg", cv2.IMREAD_UNCHANGED))
# threshold 函数对图像进行二化值处理,由于处理后图像对原图像有所变化,因此img.copy()生成新的图像,cv2.THRESH_BINARY是二化值
ret, thresh = cv2.threshold(cv2.cvtColor(img.copy(), cv2.COLOR_BGR2GRAY), 127, 255, cv2.THRESH_BINARY)
# findContours函数查找图像里的图形轮廓
# 函数参数thresh是图像对象
# 层次类型,参数cv2.RETR_EXTERNAL是获取最外层轮廓,cv2.RETR_TREE是获取轮廓的整体结构
# 轮廓逼近方法
# 输出的返回值,image是原图像、contours是图像的轮廓、hier是层次类型
image, contours, hier = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

for c in contours:
  # 轮廓绘制方法一
  # boundingRect函数计算边框值,x,y是坐标值,w,h是矩形的宽和高
  x, y, w, h = cv2.boundingRect(c)
  # 在img图像画出矩形,(x, y), (x + w, y + h)是矩形坐标,(0, 255, 0)设置通道颜色,2是设置线条粗度
  cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), 2)

  # 轮廓绘制方法二
  # 查找最小区域
  rect = cv2.minAreaRect(c)
  # 计算最小面积矩形的坐标
  box = cv2.boxPoints(rect)
  # 将坐标规范化为整数
  box = np.int0(box)
  # 绘制矩形
  cv2.drawContours(img, [box], 0, (0, 0, 255), 3)

  # 轮廓绘制方法三
  # 圆心坐标和半径的计算
  (x, y), radius = cv2.minEnclosingCircle(c)
  # 规范化为整数
  center = (int(x), int(y))
  radius = int(radius)
  # 勾画圆形区域
  img = cv2.circle(img, center, radius, (0, 255, 0), 2)

# # 轮廓绘制方法四
# 围绕图形勾画蓝色线条
cv2.drawContours(img, contours, -1, (255, 0, 0), 2)
# 显示图像
cv2.imshow("contours", img)
cv2.waitKey()
cv2.destroyAllWindows()

运行结果如图所示:

Python使用Opencv实现边缘检测以及轮廓检测的实现

示例二

import cv2
import numpy as np

img = cv2.pyrDown(cv2.imread("hammer.jpg", cv2.IMREAD_UNCHANGED))
ret, thresh = cv2.threshold(cv2.cvtColor(img.copy(), cv2.COLOR_BGR2GRAY) , 127, 255, cv2.THRESH_BINARY)
# findContours函数查找图像里的图形轮廓
# 函数参数thresh是图像对象
# 层次类型,参数cv2.RETR_EXTERNAL是获取最外层轮廓,cv2.RETR_TREE是获取轮廓的整体结构
# 轮廓逼近方法
# 输出的返回值,image是原图像、contours是图像的轮廓、hier是层次类型
image, contours, hier = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# 创建新的图像black
black = cv2.cvtColor(np.zeros((img.shape[1], img.shape[0]), dtype=np.uint8), cv2.COLOR_GRAY2BGR)


for cnt in contours:
  # 轮廓周长也被称为弧长。可以使用函数 cv2.arcLength() 计算得到。这个函数的第二参数可以用来指定对象的形状是闭合的(True) ,还是打开的(一条曲线)
  epsilon = 0.01 * cv2.arcLength(cnt, True)
  # 函数approxPolyDP来对指定的点集进行逼近,cnt是图像轮廓,epsilon表示的是精度,越小精度越高,因为表示的意思是是原始曲线与近似曲线之间的最大距离。
  # 第三个函数参数若为true,则说明近似曲线是闭合的,它的首位都是相连,反之,若为false,则断开。
  approx = cv2.approxPolyDP(cnt, epsilon, True)
  # convexHull检查一个曲线的凸性缺陷并进行修正,参数cnt是图像轮廓。
  hull = cv2.convexHull(cnt)
  # 勾画图像原始的轮廓
  cv2.drawContours(black, [cnt], -1, (0, 255, 0), 2)
  # 用多边形勾画轮廓区域
  cv2.drawContours(black, [approx], -1, (255, 255, 0), 2)
  # 修正凸性缺陷的轮廓区域
  cv2.drawContours(black, [hull], -1, (0, 0, 255), 2)
# 显示图像
cv2.imshow("hull", black)
cv2.waitKey()
cv2.destroyAllWindows()

运行结果如图所示:

Python使用Opencv实现边缘检测以及轮廓检测的实现

参考资料:OpenCV 3计算机视觉 Python语言实现第二版

到此这篇关于Python使用Opencv实现边缘检测以及轮廓检测的实现的文章就介绍到这了,更多相关Python 边缘检测内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
在Python的Django框架中生成CSV文件的方法
Jul 22 Python
python中zip()方法应用实例分析
Apr 16 Python
python 3.5实现检测路由器流量并写入txt的方法实例
Dec 17 Python
Python实现七彩蟒蛇绘制实例代码
Jan 16 Python
Django中STATIC_ROOT和STATIC_URL及STATICFILES_DIRS浅析
May 08 Python
python实现银联支付和支付宝支付接入
May 07 Python
python实现beta分布概率密度函数的方法
Jul 08 Python
pytorch制作自己的LMDB数据操作示例
Dec 18 Python
Django ModelForm操作及验证方式
Mar 30 Python
Python图像阈值化处理及算法比对实例解析
Jun 19 Python
python 匿名函数与三元运算学习笔记
Oct 23 Python
python利用appium实现手机APP自动化的示例
Jan 26 Python
python 检测nginx服务邮件报警的脚本
Dec 31 #Python
Django 实现图片上传和下载功能
Dec 31 #Python
Python wordcloud库安装方法总结
Dec 31 #Python
Python的信号库Blinker用法详解
Dec 31 #Python
浅析python实现动态规划背包问题
Dec 31 #Python
python中doctest库实例用法
Dec 31 #Python
Python项目打包成二进制的方法
Dec 30 #Python
You might like
php异常处理使用示例
2014/02/25 PHP
php从给定url获取文件扩展名的方法
2015/03/14 PHP
JavaScript设置FieldSet展开与收缩
2009/05/15 Javascript
让firefox支持IE的一些方法的javascript扩展函数代码
2010/01/02 Javascript
javascript实现显示和隐藏div方法汇总
2015/08/14 Javascript
理解javascript闭包
2015/12/15 Javascript
js实现n秒倒计时后才可以点击的效果
2015/12/20 Javascript
AngularJS equal比较对象实例详解
2016/09/14 Javascript
AngularJS使用ng-repeat和ng-if实现数据的删选显示效果示例【适用于表单数据的显示】
2016/12/13 Javascript
判断横屏竖屏(三种)
2017/02/13 Javascript
JS中使用media实现响应式布局
2017/08/04 Javascript
JS验证输入的是否是数字及保留几位小数问题
2018/05/09 Javascript
Element-ui tree组件自定义节点使用方法代码详解
2018/09/17 Javascript
详细分析React 表单与事件
2020/07/08 Javascript
vue 解决mintui弹窗弹起来,底部页面滚动bug问题
2020/11/12 Javascript
vue 动态添加的路由页面刷新时失效的原因及解决方案
2021/02/26 Vue.js
[01:05:40]2014 DOTA2国际邀请赛中国区预选赛 5 23 CIS VS DT第三场
2014/05/24 DOTA
python格式化字符串实例总结
2014/09/28 Python
python中常用检测字符串相关函数汇总
2015/04/15 Python
Django的session中对于用户验证的支持
2015/07/23 Python
Python3爬虫爬取英雄联盟高清桌面壁纸功能示例【基于Scrapy框架】
2018/12/05 Python
Python实现微信翻译机器人的方法
2019/08/13 Python
python爬虫中多线程的使用详解
2019/09/23 Python
Python3 mmap内存映射文件示例解析
2020/03/23 Python
Django获取model中的字段名和字段的verbose_name方式
2020/05/19 Python
阿迪达斯印度官方商城:adidas India
2017/03/26 全球购物
简述Linux文件系统通过i节点把文件的逻辑结构和物理结构转换的工作过程
2012/04/17 面试题
中专生自我鉴定范文
2014/02/02 职场文书
演讲稿祖国在我心中
2014/05/04 职场文书
2014年入党积极分子学习三中全会思想汇报
2014/09/13 职场文书
英语感谢信范文
2015/01/20 职场文书
护理专业自荐信范文
2015/03/06 职场文书
使用qt quick-ListView仿微信好友列表和聊天列表的示例代码
2021/06/13 Python
实现GO语言对数组切片去重
2022/04/20 Golang
Python 使用 Frame tkraise() 方法在 Tkinter 应用程序中的Frame之间切换
2022/04/24 Python
Python+DeOldify实现老照片上色功能
2022/06/21 Python