Keras搭建自编码器操作


Posted in Python onJuly 03, 2020

简介:

传统机器学习任务任务很大程度上依赖于好的特征工程,但是特征工程往往耗时耗力,在视频、语音和视频中提取到有效特征就更难了,工程师必须在这些领域有非常深入的理解,并且需要使用专业算法提取这些数据的特征。深度学习则可以解决人工难以提取有效特征的问题,大大缓解机器学习模型对特征工程的依赖。

深度学习在早期一度被认为是一种无监督的特征学习过程,模仿人脑对特征逐层抽象的过程。这其中两点很重要:一是无监督学习;二是逐层训练。例如在图像识别问题中,假定我们有许多汽车图片,要如何利用计算机进行识别任务呢?如果从像素级开始进行训练分类器,那么绝大多数算法很难工作。如果我们提取高阶特征,比如汽车的车轮、汽车的车窗、车身等。那么就可以使用这些高阶特征非常准确的对图像进行分类。不过高阶特征都是由底层特征组成,这便是深度学习训练过程中所做的特征学习。

早年有学者发现,可以使用少量的基本特征进行组合拼装得到更高层抽象的特征,这其实就是我们常说的特征的稀疏表达。对图像任务来说,一张原始图片可以由较少的图片碎片组合得到。对语音识别任务来讲,绝大多数的声音也可以由一些基本的结构线性组合得到。对人脸识别任务来说,根据不同的器官,如:鼻子、嘴、眉毛、眼睛瞪,这些器官可以向上拼出不同样式的人脸,最后模型通过在图片中匹配这些不同样式的人脸来进行识别。在深度神经网络中,对每一层神经网络来说前一层的输出都是未加工的像素,而这一层则是对像素进行加工组织成更高阶的特征的过程(即前面提到过的图片碎片进行线性组合加工的过程)。

根据上述基本概念的描述,特征是可以不断抽象转为高一层特征的,那我们如何找到这些基本结构,然后如何抽象?这里引出无监督的自编码器来提取特征。自编码器--顾名思义,可以使用自身高阶特征编码自己。它的输入和输出是一致的。因此,它的基本思想是使用稀疏一些高阶特征重新组合来重构自己。自编码器的刚开始提出是Hinton在Science上发表文章,用来解决数据降维问题。此外,Hinton还提出了基于深度信念网络的无监督逐层训练的贪心算法,为训练很深的网络提供了一个可行的方案。深度信念网络的提出是使用逐层训练的方式提取特征,使得在有监督学习任务之前,使得网络权重初始化到一个比较好的位置。其思想与自编码器的非常相似。在此基础上,国内外学者又提出了自编码器的各种版本,如:稀疏自编码器、去噪自编码器等。

本文使用Keras深度学习开发库,在MNIST数据集上实现了简单自编码器、深度稀疏自编码器和卷积自编码器。

自编码器用途:

目前自编码器的应用主要有两个方面,第一是数据去噪,第二是为进行可视化而降维。配合适当的维度和稀疏约束,自编码器可以学习到比PCA等技术更有意思的数据投影。此外,在数据共有特征建模方面,也有叫广泛的应用。

1、简单自编码器

简单自编码器

from keras.layers import Input, Dense
from keras.models import Model
from keras.datasets import mnist
import numpy as np
import matplotlib.pyplot as plt
 
(x_train, _), (x_test, _) = mnist.load_data()
 
x_train = x_train.astype('float32') / 255.
x_test = x_test.astype('float32') / 255.
x_train = x_train.reshape((len(x_train), np.prod(x_train.shape[1:])))
x_test = x_test.reshape((len(x_test), np.prod(x_test.shape[1:])))
print(x_train.shape)
print(x_test.shape)
 
encoding_dim = 32
input_img = Input(shape=(784,))
 
encoded = Dense(encoding_dim, activation='relu')(input_img)
decoded = Dense(784, activation='sigmoid')(encoded)
 
autoencoder = Model(inputs=input_img, outputs=decoded)
encoder = Model(inputs=input_img, outputs=encoded)
 
encoded_input = Input(shape=(encoding_dim,))
decoder_layer = autoencoder.layers[-1]
 
decoder = Model(inputs=encoded_input, outputs=decoder_layer(encoded_input))
 
autoencoder.compile(optimizer='adadelta', loss='binary_crossentropy')
 
autoencoder.fit(x_train, x_train, epochs=50, batch_size=256, 
  shuffle=True, validation_data=(x_test, x_test))
 
encoded_imgs = encoder.predict(x_test)
decoded_imgs = decoder.predict(encoded_imgs)
 
n = 10 # how many digits we will display
plt.figure(figsize=(20, 4))
for i in range(n):
 ax = plt.subplot(2, n, i + 1)
 plt.imshow(x_test[i].reshape(28, 28))
 plt.gray()
 ax.get_xaxis().set_visible(False)
 ax.get_yaxis().set_visible(False)
 
 ax = plt.subplot(2, n, i + 1 + n)
 plt.imshow(decoded_imgs[i].reshape(28, 28))
 plt.gray()
 ax.get_xaxis().set_visible(False)
 ax.get_yaxis().set_visible(False)
plt.show()

测试效果:

Keras搭建自编码器操作

2、深度自编码器、稀疏自编码器

为解决自编码重构损失大的问题,使用多层网络搭建自编码器。对隐层单元施加稀疏性约束的话,会得到更为紧凑的表达,只有一小部分神经元会被激活。在Keras中,我们可以通过添加一个activity_regularizer达到对某层激活值进行约束的目的

import numpy as np 
np.random.seed(1337) # for reproducibility 
 
from keras.datasets import mnist 
from keras.models import Model #泛型模型 
from keras.layers import Dense, Input 
import matplotlib.pyplot as plt 
 
# X shape (60,000 28x28), y shape (10,000, ) 
(x_train, _), (x_test, y_test) = mnist.load_data() 
 
# 数据预处理 
x_train = x_train.astype('float32') / 255. # minmax_normalized 
x_test = x_test.astype('float32') / 255. # minmax_normalized 
x_train = x_train.reshape((x_train.shape[0], -1)) 
x_test = x_test.reshape((x_test.shape[0], -1)) 
print(x_train.shape) 
print(x_test.shape) 
 
# 压缩特征维度至2维 
encoding_dim = 2 
 
# this is our input placeholder 
input_img = Input(shape=(784,)) 
 
# 编码层 
encoded = Dense(128, activation='relu')(input_img) 
encoded = Dense(64, activation='relu')(encoded) 
encoded = Dense(10, activation='relu')(encoded) 
encoder_output = Dense(encoding_dim)(encoded) 
 
# 解码层 
decoded = Dense(10, activation='relu')(encoder_output) 
decoded = Dense(64, activation='relu')(decoded) 
decoded = Dense(128, activation='relu')(decoded) 
decoded = Dense(784, activation='tanh')(decoded) 
 
# 构建自编码模型 
autoencoder = Model(inputs=input_img, outputs=decoded) 
 
# 构建编码模型 
encoder = Model(inputs=input_img, outputs=encoder_output) 
 
# compile autoencoder 
autoencoder.compile(optimizer='adam', loss='mse') 
 
autoencoder.summary()
encoder.summary()
 
# training 
autoencoder.fit(x_train, x_train, epochs=10, batch_size=256, shuffle=True) 
 
# plotting 
encoded_imgs = encoder.predict(x_test) 
 
plt.scatter(encoded_imgs[:, 0], encoded_imgs[:, 1], c=y_test,s=3) 
plt.colorbar() 
plt.show() 
 
decoded_imgs = autoencoder.predict(x_test)
# use Matplotlib (don't ask)
import matplotlib.pyplot as plt
 
n = 10 # how many digits we will display
plt.figure(figsize=(20, 4))
for i in range(n):
 # display original
 ax = plt.subplot(2, n, i + 1)
 plt.imshow(x_test[i].reshape(28, 28))
 plt.gray()
 ax.get_xaxis().set_visible(False)
 ax.get_yaxis().set_visible(False)
 
 # display reconstruction
 ax = plt.subplot(2, n, i + 1 + n)
 plt.imshow(decoded_imgs[i].reshape(28, 28))
 plt.gray()
 ax.get_xaxis().set_visible(False)
 ax.get_yaxis().set_visible(False)
plt.show()

运行结果:

Keras搭建自编码器操作

3、卷积自编码器

卷积自编码器的编码器部分由卷积层和MaxPooling层构成,MaxPooling负责空域下采样。而解码器由卷积层和上采样层构成。

from keras.layers import Input, Dense, Convolution2D, MaxPooling2D, UpSampling2D
from keras.models import Model
from keras.datasets import mnist
import numpy as np
 
(x_train, _), (x_test, _) = mnist.load_data()
 
x_train = x_train.astype('float32') / 255.
x_test = x_test.astype('float32') / 255.
print('---> x_train shape: ', x_train.shape)
x_train = np.reshape(x_train, (len(x_train), 28, 28, 1))
x_test = np.reshape(x_test, (len(x_test), 28, 28, 1))
print('---> xtrain shape: ', x_train.shape)
print('---> x_test shape: ', x_test.shape)
input_img = Input(shape=(28, 28, 1))
 
x = Convolution2D(16, (3, 3), activation='relu', padding='same')(input_img)
x = MaxPooling2D((2, 2), padding='same')(x)
x = Convolution2D(8, (3, 3), activation='relu', padding='same')(x)
x = MaxPooling2D((2, 2), padding='same')(x)
x = Convolution2D(8, (3, 3), activation='relu', padding='same')(x)
encoded = MaxPooling2D((2, 2), padding='same')(x)
 
x = Convolution2D(8, (3, 3), activation='relu', padding='same')(encoded)
x = UpSampling2D((2, 2))(x)
x = Convolution2D(8, (3, 3), activation='relu', padding='same')(x)
x = UpSampling2D((2, 2))(x)
x = Convolution2D(16, (3, 3), activation='relu')(x)
x = UpSampling2D((2, 2))(x)
decoded = Convolution2D(1, (3, 3), activation='sigmoid', padding='same')(x)
 
autoencoder = Model(inputs=input_img, outputs=decoded)
autoencoder.compile(optimizer='adadelta', loss='binary_crossentropy')
 
# 打开一个终端并启动TensorBoard,终端中输入 tensorboard --logdir=/autoencoder
autoencoder.fit(x_train, x_train, epochs=10, batch_size=256,
  shuffle=True, validation_data=(x_test, x_test))
 
decoded_imgs = autoencoder.predict(x_test)
import matplotlib.pyplot as plt
decoded_imgs = autoencoder.predict(x_test)
 
n = 10
plt.figure(figsize=(20, 4))
for i in range(1, n+1):
 # display original
 ax = plt.subplot(2, n, i)
 plt.imshow(x_test[i].reshape(28, 28))
 plt.gray()
 ax.get_xaxis().set_visible(False)
 ax.get_yaxis().set_visible(False)
 
 # display reconstruction
 ax = plt.subplot(2, n, i + n)
 plt.imshow(decoded_imgs[i].reshape(28, 28))
 plt.gray()
 ax.get_xaxis().set_visible(False)
 ax.get_yaxis().set_visible(False)
plt.show()

训练结果展示:

Keras搭建自编码器操作

以上这篇Keras搭建自编码器操作就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python程序员面试题 你必须提前准备!
Jan 16 Python
Python切片操作深入详解
Jul 27 Python
python实现推箱子游戏
Mar 25 Python
Python+OpenCV图片局部区域像素值处理改进版详解
Jan 23 Python
详解pandas数据合并与重塑(pd.concat篇)
Jul 09 Python
django-rest-framework 自定义swagger过程详解
Jul 18 Python
Django单元测试工具test client使用详解
Aug 02 Python
python redis 批量设置过期key过程解析
Nov 26 Python
Window系统下Python如何安装OpenCV库
Mar 05 Python
python如何支持并发方法详解
Jul 25 Python
python 两种方法修改文件的创建时间、修改时间、访问时间
Sep 26 Python
Python安装使用Scrapy框架
Apr 12 Python
python 识别登录验证码图片功能的实现代码(完整代码)
Jul 03 #Python
python图片验证码识别最新模块muggle_ocr的示例代码
Jul 03 #Python
keras topN显示,自编写代码案例
Jul 03 #Python
python如何使用代码运行助手
Jul 03 #Python
Python 3.10 的首个 PEP 诞生,内置类型 zip() 迎来新特性(推荐)
Jul 03 #Python
python3 简单实现组合设计模式
Jul 02 #Python
Django Session和Cookie分别实现记住用户登录状态操作
Jul 02 #Python
You might like
PHP 错误之引号中使用变量
2009/05/04 PHP
php求正负数数组中连续元素最大值示例
2014/04/11 PHP
PHP计算数组中值的和与乘积的方法(array_sum与array_product函数)
2016/04/01 PHP
PHP Socket网络操作类定义与用法示例
2017/08/30 PHP
PHP安装扩展mcrypt以及相关依赖项深入讲解
2021/03/04 PHP
Discuz! 6.1_jQuery兼容问题
2008/09/23 Javascript
jquery 插件开发方法小结
2009/10/23 Javascript
jQuery实现点击文本框弹出热门标签的提示效果
2013/11/17 Javascript
javascript的tab切换原理与效果实现方法
2015/01/10 Javascript
一道常被人轻视的web前端常见面试题(JS)
2016/02/15 Javascript
jQuery删除当前节点元素
2016/12/07 Javascript
JavaScript数组去重的6个方法
2017/01/21 Javascript
JS简单判断字符在另一个字符串中出现次数的2种常用方法
2017/04/20 Javascript
带你快速理解javascript中的事件模型
2017/08/14 Javascript
基于D3.js实现时钟效果
2018/07/17 Javascript
浅谈JS中this在各个场景下的指向
2019/08/14 Javascript
Jquery让form表单异步提交代码实现
2019/11/14 jQuery
Vue.directive 实现元素scroll逻辑复用
2019/11/29 Javascript
Vue 解决在element中使用$notify在提示信息中换行问题
2020/11/11 Javascript
微信小程序组件生命周期的踩坑记录
2021/03/03 Javascript
wxpython中利用线程防止假死的实现方法
2014/08/11 Python
SVM基本概念及Python实现代码
2017/12/27 Python
Python+selenium实现截图图片并保存截取的图片
2018/01/05 Python
python实现学员管理系统
2019/02/26 Python
TensorFlow tf.nn.max_pool实现池化操作方式
2020/01/04 Python
css3遮罩层镂空效果的多种实现方法
2020/05/11 HTML / CSS
美国旅游网站:Tours4Fun
2017/02/17 全球购物
Linux管理员面试经常问道的相关命令
2014/12/12 面试题
JPA的特点
2014/10/25 面试题
掌上明珠Java程序员面试总结
2016/02/23 面试题
收款委托书
2014/10/14 职场文书
银行职员工作失误检讨书
2014/10/14 职场文书
三潭印月的导游词
2015/02/12 职场文书
停电通知范文
2015/04/16 职场文书
2015年医院保卫科工作总结
2015/07/23 职场文书
使用Python获取字典键对应值的方法
2022/04/26 Python