Python基于机器学习方法实现的电影推荐系统实例详解


Posted in Python onJune 25, 2019

推荐算法在互联网行业的应用非常广泛,今日头条、美团点评等都有个性化推荐,推荐算法抽象来讲,是一种对于内容满意度的拟合函数,涉及到用户特征和内容特征,作为模型训练所需维度的两大来源,而点击率,页面停留时间,评论或下单等都可以作为一个量化的 Y 值,这样就可以进行特征工程,构建出一个数据集,然后选择一个合适的监督学习算法进行训练,得到模型后,为客户推荐偏好的内容,如头条的话,就是咨询和文章,美团的就是生活服务内容。

可选择的模型很多,如协同过滤,逻辑斯蒂回归,基于DNN的模型,FM等。我们使用的方式是,基于内容相似度计算进行召回,之后通过FM模型和逻辑斯蒂回归模型进行精排推荐,下面就分别说一下,我们做这个电影推荐系统过程中,从数据准备,特征工程,到模型训练和应用的整个过程。

我们实现的这个电影推荐系统,爬取的数据实际上维度是相对少的,特别是用户这一侧的维度,正常推荐系统涉及的维度,诸如页面停留时间,点击频次,收藏等这些维度都是没有的,以及用户本身的维度也相对要少,没有地址、年龄、性别等这些基本的维度,这样我们爬取的数据只有打分和评论这些信息,所以之后我们又从这些信息里再拿出一些统计维度来用。我们爬取的电影数据(除电影详情和图片信息外)是如下这样的形式:

Python基于机器学习方法实现的电影推荐系统实例详解

这里的数据是有冗余的,又通过如下的代码,对数据进行按维度合并,去除冗余数据条目:

# 处理主函数,负责将多个冗余数据合并为一条电影数据,将地区,导演,主演,类型,特色等维度数据合并
def mainfunc():
 try:
  unable_list = []
  with connection.cursor() as cursor:
   sql='select id,name from movie'
   cout=cursor.execute(sql)
   print("数量: "+str(cout))

   for row in cursor.fetchall():
    #print(row[1])
    movieinfo = df[df['电影名'] == row[1]]
    if movieinfo.shape[0] == 0:
     disable_movie(row[0])
     print('disable movie ' + str(row[1]))
    else:
     g = lambda x:movieinfo[x].iloc[0]
     types = movieinfo['类型'].tolist()
     types = reduce(lambda x,y:x+'|'+y,list(set(types)))
     traits = movieinfo['特色'].tolist()
     traits = reduce(lambda x,y:x+'|'+y,list(set(traits)))
     update_one_movie_info(type_=types, actors=g('主演'), region=g('地区'), director=g('导演'), trait=traits, rat=g('评分'), id_=row[0])
       
  connection.commit()
 finally:
  connection.close()

之后开始准备用户数据,我们从用户打分的数据中,统计出每一个用户的打分的最大值,最小值,中位数值和平均值等,从而作为用户的一个附加属性,存储于userproex表中:

'insert into userproex(userid, rmax, rmin, ravg, rcount, rsum, rmedian) values(\'%s\', %s, %s, %s, %s, %s, %s)' % (userid, rmax, rmin, ravg, rcount, rsum, rmedium)
'update userproex set rmax=%s, rmin=%s, ravg=%s, rmedian=%s, rcount=%s, rsum=%s where userid=\'%s\'' % (rmax, rmin, ravg, rmedium, rcount, rsum, userid)

以上两个SQL是最终插入表的时候用到的,代表准备用户数据的最终步骤,其余细节可以参考文末的github仓库,不在此赘述,数据处理还用到了一些SQL,以及其他处理细节。

系统上线运行时,第一次是全量的数据处理,之后会是增量处理过程,这个后面还会提到。

我们目前把用户数据和电影的数据的原始数据算是准备好了,下一步开始特征工程。做特征工程的思路是,对type, actors, director, trait四个类型数据分别构建一个频度统计字典,用于之后的one-hot编码,代码如下:

def get_dim_dict(df, dim_name):
 type_list = list(map(lambda x:x.split('|') ,df[dim_name]))
 type_list = [x for l in type_list for x in l]
 def reduce_func(x, y):
 for i in x:
  if i[0] == y[0][0]:
  x.remove(i)
  x.append(((i[0],i[1] + 1)))
  return x
 x.append(y[0])
 return x
 l = filter(lambda x:x != None, map(lambda x:[(x, 1)], type_list))
 type_zip = reduce(reduce_func, list(l))
 type_dict = {}
 for i in type_zip:
 type_dict[i[0]] = i[1]
 return type_dict

涉及到的冗余数据也要删除

df_ = df.drop(['ADD_TIME', 'enable', 'rat', 'id', 'name'], axis=1)

将电影数据转换为字典列表,由于演员和导演均过万维,实际计算时过于稀疏,当演员或导演只出现一次时,标记为冷门演员或导演

movie_dict_list = []
for i in df_.index:
 movie_dict = {}
 #type
 for s_type in df_.iloc[i]['type'].split('|'):
 movie_dict[s_type] = 1
 #actors
 for s_actor in df_.iloc[i]['actors'].split('|'):
 if actors_dict[s_actor] < 2:
  movie_dict['other_actor'] = 1
 else:
  movie_dict[s_actor] = 1
 #regios
 movie_dict[df_.iloc[i]['region']] = 1
 #director
 for s_director in df_.iloc[i]['director'].split('|'):
 if director_dict[s_director] < 2:
  movie_dict['other_director'] = 1
 else:
  movie_dict[s_director] = 1
 #trait
 for s_trait in df_.iloc[i]['trait'].split('|'):
 movie_dict[s_trait] = 1
 movie_dict_list.append(movie_dict)

使用DictVectorizer进行向量化,做One-hot编码

v = DictVectorizer()
X = v.fit_transform(movie_dict_list)

这样的数据,下面做余弦相似度已经可以了,这是特征工程的基本的一个处理,模型所使用的数据,需要将电影,评分,用户做一个数据拼接,构建训练样本,并保存CSV,注意这个CSV不用每次全量构建,而是除第一次外都是增量构建,通过mqlog中类型为'c'的消息,增量构建以comment(评分)为主的训练样本,拼接之后的形式如下:

USERID cf2349f9c01f9a5cd4050aebd30ab74f
movieid 10533913
type 剧情|奇幻|冒险|喜剧
actors 艾米·波勒|菲利丝·史密斯|理查德·坎德|比尔·哈德尔|刘易斯·布莱克
region 美国
director 彼特·道格特|罗纳尔多·德尔·卡门
trait 感人|经典|励志
rat 8.7
rmax 5
rmin 2
ravg 3.85714
rcount 7
rmedian 4
TIME_DIS 15

这个数据的actors等字段和上面的处理是一样的,为了之后libfm的使用,在这里需要转换为libsvm的数据格式

dump_svmlight_file(train_X_scaling, train_y_, train_file)

模型使用上遵循先召回,后精排的策略,先通过余弦相似度计算一个相似度矩阵,然后根据这个矩阵,为用户推荐相似的M个电影,在通过训练好的FM,LR模型,对这个M个电影做偏好预估,FM会预估一个用户打分,LR会预估一个点击概率,综合结果推送给用户作为推荐电影。

模块列表

  • recsys_ui: 前端技术(html5+JavaScript+jquery+ajax)
  • recsys_web: 后端技术(Java+SpringBoot+mysql)
  • recsys_spider: 网络爬虫(python+BeautifulSoup)
  • recsys_sql: 使用SQL数据处理
  • recsys_model: pandas, libFM, sklearn. pandas数据分析和数据清洗,使用libFM,sklearn对模型初步搭建
  • recsys_core: 使用pandas, libFM, sklearn完整的数据处理和模型构建、训练、预测、更新的程序
  • recsys_etl:ETL 处理爬虫增量数据时使用kettle ETL便捷处理数据

为了能够输出一个可感受的系统,我们采购了阿里云服务器作为数据库服务器和应用服务器,在线上搭建了电影推荐系统的第一版,地址是:

www.technologyx.cn

可以注册,也可以使用已有用户:

用户名 密码
gavin 123
gavin2 123
wuenda 123

欢迎登录使用感受一下。

Python基于机器学习方法实现的电影推荐系统实例详解

设计思路

Python基于机器学习方法实现的电影推荐系统实例详解

用简单地方式表述一下设计思路,

1.后端服务recsys_web依赖于系统数据库的推荐表‘recmovie'展示给用户推荐内容

2.用户对电影打分后(暂时没有对点击动作进行响应),后台应用会向mqlog表插入一条数据(消息)。

3.新用户注册,系统会插入mqlog中一条新用户注册消息

4.新电影添加,系统会插入mqlog中一条新电影添加消息

5.推荐模块recsys_core会拉取用户的打分消息,并且并行的做以下操作:

a.增量的更新训练样本
b.快速(因服务器比较卡,目前设定了延时)对用户行为进行基于内容推荐的召回
c.训练样本更新模型
d.使用FM,LR模型对Item based所召回的数据进行精排
e.处理新用户注册消息,监听到用户注册消息后,对该用户的属性初始化(统计值)。
f.处理新电影添加消息,更新基于内容相似度而生成的相似度矩阵

注:

由于线上资源匮乏,也不想使系统增加复杂度,所以没有直接使用MQ组件,而是以数据库表作为代替。
项目源码地址: https://github.com/GavinHacker/recsys_core

模型相关的模块介绍

增量的处理用户comment,即增量处理评分模块

这个模块负责监听来自mqlog的消息,如果消息类型是用户的新的comment,则对消息进行拉取,并相应的把新的comment合并到总的训练样本集合,并保存到一个临时目录

然后更新数据库的config表,把最新的样本集合(csv格式)的路径更新上去

运行截图

Python基于机器学习方法实现的电影推荐系统实例详解

消息队列的截图

Python基于机器学习方法实现的电影推荐系统实例详解

把csv处理为libsvm数据

这个模块负责把最新的csv文件,异步的处理成libSVM格式的数据,以供libFM和LR模型使用,根据系统的性能确定任务的间隔时间

运行截图

Python基于机器学习方法实现的电影推荐系统实例详解

基于内容相似度推荐

当监听到用户有新的comment时,该模块将进行基于内容相似度的推荐,并按照电影评分推荐

运行截图

Python基于机器学习方法实现的电影推荐系统实例详解

libFM预测

http://www.libfm.org/

对已有的基于内容推荐召回的电影进行模型预测打分,呈现时按照打分排序

如下图为打分更新

Python基于机器学习方法实现的电影推荐系统实例详解

逻辑回归预测

对样本集中的打分做0,1处理,根据正负样本平衡,> 3分为喜欢 即1, <=3 为0 即不喜欢,这样使用逻辑回归做是否喜欢的点击概率预估,根据概率排序

Python基于机器学习方法实现的电影推荐系统实例详解

项目源码地址: https://github.com/GavinHacker/recsys_core

Python 相关文章推荐
在Python的Django框架中创建语言文件
Jul 27 Python
Python实现各种排序算法的代码示例总结
Dec 11 Python
使用Python内置的模块与函数进行不同进制的数的转换
Mar 12 Python
Python使用asyncio包处理并发详解
Sep 09 Python
Python登录并获取CSDN博客所有文章列表代码实例
Dec 28 Python
对python抓取需要登录网站数据的方法详解
May 21 Python
对Python实现累加函数的方法详解
Jan 23 Python
Python基础之条件控制操作示例【if语句】
Mar 23 Python
python元组和字典的内建函数实例详解
Oct 22 Python
python实现淘宝购物系统
Oct 25 Python
python实现批量提取指定文件夹下同类型文件
Apr 05 Python
Jupyter Notebook内使用argparse报错的解决方案
Jun 03 Python
Python 中的参数传递、返回值、浅拷贝、深拷贝
Jun 25 #Python
pyqt5 删除layout中的所有widget方法
Jun 25 #Python
在Python中表示一个对象的方法
Jun 25 #Python
Python设置matplotlib.plot的坐标轴刻度间隔以及刻度范围
Jun 25 #Python
浅谈PyQt5 的帮助文档查找方法,可以查看每个类的方法
Jun 25 #Python
PyQt5根据控件Id获取控件对象的方法
Jun 25 #Python
PyQt5组件读取参数的实例
Jun 25 #Python
You might like
可定制的PHP缩略图生成程式(需要GD库支持)
2007/03/06 PHP
PHP自定义函数收代码
2010/08/01 PHP
php 中的4种标记风格介绍
2012/05/10 PHP
php实现快速排序法函数代码
2012/08/27 PHP
IIS安装Apache伪静态插件的具体操作图文
2013/07/01 PHP
PHP调用其他文件中的类
2018/04/02 PHP
基于php+MySql实现学生信息管理系统实例
2020/08/04 PHP
jquery实现marquee效果(文字或者图片的水平垂直滚动)
2013/01/07 Javascript
Vue.js中组件中的slot实例详解
2017/07/17 Javascript
js实现移动端导航点击自动滑动效果
2017/07/18 Javascript
微信小程序开发之IOS和Android兼容的问题
2017/09/26 Javascript
vue中手机号,邮箱正则验证以及60s发送验证码的实例
2018/03/16 Javascript
解决Vue-cli npm run build生产环境打包,本地不能打开的问题
2018/09/20 Javascript
在JS循环中使用async/await的方法
2018/10/12 Javascript
vue实现的树形结构加多选框示例
2019/02/02 Javascript
详解JQuery基础动画操作
2019/04/12 jQuery
微信小程序实现搜索指定景点周边美食、酒店
2019/05/18 Javascript
Element-ui DatePicker显示周数的方法示例
2019/07/19 Javascript
微信小程序页面间传递数组对象方法解析
2019/11/06 Javascript
JS正则表达式验证端口范围(0-65535)
2020/01/06 Javascript
jQuery实现简易聊天框
2020/02/08 jQuery
javascript实现拖拽碰撞检测
2020/03/12 Javascript
javascript实现评分功能
2020/06/24 Javascript
基于vue hash模式微信分享#号的解决
2020/09/07 Javascript
python使用内存zipfile对象在内存中打包文件示例
2014/04/30 Python
python使用time、datetime返回工作日列表实例代码
2019/05/09 Python
python适合人工智能的理由和优势
2019/06/28 Python
安装完Python包然后找不到模块的解决步骤
2020/02/13 Python
美国知名男士服饰品牌:Brooks Brothers(布克兄弟)
2016/08/25 全球购物
草莓网化妆品澳大利亚站:Strawberrynet AU
2017/12/18 全球购物
三年级数学教学反思
2014/01/31 职场文书
心理健康活动总结
2014/04/30 职场文书
车间安全生产标语
2014/06/06 职场文书
运动会拉拉队口号
2014/06/09 职场文书
Redis高级数据类型Hyperloglog、Bitmap的使用
2021/05/24 Redis
解析Java异步之call future
2021/06/14 Java/Android