Python机器学习之KNN近邻算法


Posted in Python onMay 14, 2021

一、KNN概述

简单来说,K-近邻算法采用测量不同特征值之间的距离方法进行分类

优点:精度高、对异常值不敏感、无数据输入假定
缺点:计算复杂度高、空间复杂度高
适用数据范围:数值型和标称2型

工作原理:存在一个样本数据集合,也称为训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一个数据与所属分类的对应关系(训练集)。输入没有标签的新数据之后,将新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中特征最相似数据(最近邻)的分类标签(测试集)。一般来说,我们只选择样本数据集中前k个最相似的数据,这就是k-近邻算法中k的出处。(通常k不大于20)

二、使用Python导入数据

我们先写入一段代码

from numpy import *		# 导入numpy模块
import operator		# 导入operator模块
def createDataSet():		# 创建数据集函数
	# 构建一个数组存放特征值
    group = array(
        [[1.0, 1.1], [1.0, 1.0], [0, 0], [0, 0.1]]
    )
    # 构建一个数组存放目标值
    labels = ['A', 'A', 'B', 'B']
    return group, labels

此处稍微介绍一下numpy这个包吧

三、numpy.array()

NumPy的主要对象是同种元素的多维数组。这是一个所有的元素都是一种类型、通过一个正整数元组索引的元素表格(通常是元素是数字)。
在NumPy中维度(dimensions)叫做轴(axes),轴的个数叫做秩(rank,但是和线性代数中的秩不是一样的,在用python求线代中的秩中,我们用numpy包中的linalg.matrix_rank方法计算矩阵的秩
线性代数中秩的定义:设在矩阵A中有一个不等于0的r阶子式D,且所有r+1阶子式(如果存在的话)全等于0,那末D称为矩阵A的最高阶非零子式,数r称为矩阵A的秩,记作R(A)。

四、实施KNN分类算法

依照KNN算法,我们依次来

先准备好四个需要的数据

  • inX:用于分类的输入向量inX
  • dataSet:输入的训练样本集dataSet
  • labels:标签向量labels(元素数目和矩阵dataSet的行数相同)
  • k:选择最近邻居的数目

五、计算已知类别数据集中的点与当前点之间的距离

使用欧式距离:

Python机器学习之KNN近邻算法

六、完整代码

# 返回矩阵的行数
dataSetSize = dataSet.shape[0]	
# 列数不变,行数变成dataSetSize列
diffMat = tile(inX, (dataSetSize, 1)) - dataSet
sqDiffMat = diffMat ** 2
sqDistances = sqDiffMat.sum(axis=1)
distances = sqDistances**0.5

第一行

# 返回矩阵的行数
dataSetSize = dataSet.shape[0]	
# 以第一步的数据为例
answer:4		# 4行

第二行

inX = [1. , 0.]
# 列数不变,行数变成dataSetSize列
diffMat = tile(inX, (dataSetSize, 1)) - dataSet

# tile(inX, (dataSetSize, 1))
inX = [
	[1. , 0.],
	[1. , 0.],
	[1. , 0.],
	[1. , 0.]
]
# inX - dataSet两个矩阵相减(行列相等相加相减才有意义)
dataSet = [
		[1. , 1.1],
        [1. , 1. ],
        [0. , 0. ],
        [0. , 0.1]
]
diffMat = [
	[0. , -1.1],
	[0. , -1.],
	[1. , 0.],
	[1. , -0.1]
]

第三行

# 求平方差
sqDiffMat = diffMat * 2

第四行

# 计算矩阵中每一行元素之和
# 此时会形成一个多行1列的矩阵
sqDistances = sqDiffMat.sum(axis=1)

第五行

# 开根号
distances = sqDistances**0.5

按照距离递增次序排序

# 对数组进行排序
sortedDistIndicies = distances.argsort()

选择与当前点距离最小的k个点

classCount = {}		# 新建一个字典
# 确定前k个距离最小元素所在的主要分类
for i in range(k):
	# voteIlabel的取值是labels中sortedDistIndicies[i]的位置
	voteIlabel = labels[sortedDistIndicies[i]]
	classCount[voteIlabel] = classCount.get(voteIlabel, 0) + 1

确定前k个点所在类别的出现概率

# 排序
sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)

###11# 返回前k个点出现频率最高的类别作为当前点的预测分类

return sortedClassCount[0][0]

刚刚试一试C++的版本…小心,救命

#include <iostream>
#include <vector>
#include <algorithm>
#include <cmath>
#include <map>
int sum_vector(std::vector<int>& v) {
	int sum = 0;
	for (int i = 0; i < v.size(); ++i) {
		sum = v[i] + sum;
	}
	return sum;
}
int knn(int k) {
	using std::cout;
	using std::endl;
	using std::vector;
	vector<vector<int>> x;	
	vector<int> x_sample = {2, 3, 4};	
	for (int i = 0; i < 4; ++i) {
		x.push_back(x_sample);
	}
	vector<int> y = {1, 1, 1, 1};
	int dataSetSize = x.size();		

	vector<int> x_test = {4, 3, 4};
	vector<vector<int>> x_test_matrix;
	for (int i = 0; i < dataSetSize; ++i) {
		x_test_matrix.push_back(x_test);
	}
	vector<int> v_total;
	for (int i = 0; i < dataSetSize; ++i) {
		for (int j = 0; j < x_test_matrix[i].size(); ++j) {
			x_test_matrix[i][j] = x_test_matrix[i][j] - x[i][j];
			x_test_matrix[i][j] = x_test_matrix[i][j] * 2;
		}
		int sum_vec = sum_vector(x_test_matrix[i]);
		v_total.push_back(sqrt(sum_vec));
	}
	sort(v_total.begin(), v_total.end());
	std::map<int, int> mp;
	for (int i = 0; i < k; ++i) {
		int label = y[v_total[i]];
		mp[label] += 1;
	}
	int max_end_result = 0;
	for (std::map<int, int>::iterator it = mp.begin(); it != mp.end(); it++) {
		if (it->first > max_end_result) {
			max_end_result = it->first;
		}
	}
	return max_end_result;
}
int main() {
	int k = 12;
	int value = knn(k);
	std::cout << "result:\n" << std::endl;
	return 0;
}

七、数据处理、分析、测试

处理excel和txt数据

excel数据是矩阵数据,可直接使用,在此不做处理。

文本txt数据需要一些数据处理

def file2matrix(filename):
	fr = open(filename)
	# 读取行数据直到尾部
	arrayOLines = fr.readlines()
	# 获取行数
	numberOfLines = len(arrayOLines)
	# 创建返回shape为(numberOfLines, 3)numpy矩阵
	returnMat = zeros((numberOfLines, 3))
	classLabelVector = []
	index = 0
	for line in arrayOLines:
		# 去除首尾的回车符
		line = line.strip()
		# 以tab字符'\t'为符号进行分割字符串
		listFromLine = line.split('\t')
		# 选取前3个元素,把他们存储到特征矩阵中
		returnMat[index, :] = listFromLine[0: 3]
		# 把目标变量放到目标数组中
		classLabelVector.append(int(listFromLine[-1]))
		index += 1
	return returnMat, classLabelVector

数据归一化和标准化

在数值当中,会有一些数据大小参差不齐,严重影响数据的真实性,因此,对数据进行归一化和标准化是使得数据取值在一定的区间,具有更好的拟合度。

例如归一化就是将数据取值范围处理为0到1或者-1到1之间

# max:最大特征值
# min:最小特征值
newValue = (oldValue - min)/(max-min)

写个函数

def autoNorm(dataSet):
	# min(0)返回该矩阵中每一列的最小值
	minVals = dataSet.min(0)
	# max(0)返回该矩阵中每一列的最大值
	maxVals = dataSet.max(0)
	# 求出极值
	ranges = maxVals - minVals
	# 创建一个相同行列的0矩阵
	normDataSet = zeros(shape(dataSet))
	# 得到行数
	m = dataSet.shape[0]
	# 得到一个原矩阵减去m倍行1倍列的minVals
	normDataSet = dataSet - tile(minVlas, (m,1))
	# 特征值相除
	normDataSet = normDataSet/tile(ranges, (m, 1))
	return normDataSet, ranges, minVals

归一化的缺点:如果异常值就是最大值或者最小值,那么归一化也就没有了保证(稳定性较差,只适合传统精确小数据场景)

标准化可查

八、鸢尾花数据测试

既然已经了解其内置的算法了,那么便调库来写一个吧

from sklearn.datasets import load_iris      # 导入内置数据集
from sklearn.model_selection import train_test_split        # 提供数据集分类方法
from sklearn.preprocessing import StandardScaler        # 标准化
from sklearn.neighbors import KNeighborsClassifier      # KNN


def knn_iris():
    # 获得鸢尾花数据集
    iris = load_iris()
    # 获取数据集
    # random_state为随机数种子,一个数据集中相等的行不能大于6
    x_train, x_test, y_train, y_test = train_test_split(iris.data, iris.target, random_state=6)
    # 特征工程:标准化
    transfer = StandardScaler()
    # 训练集标准化
    x_train = transfer.fit_transform(x_train)
    # 测试集标准化
    x_test = transfer.transform(x_test)
    # 设置近邻个数
    estimator = KNeighborsClassifier(n_neighbors=3)
    # 训练集测试形成模型
    estimator.fit(x_train, y_train)

    # 模型预估
    # 根据预测特征值得出预测目标值
    y_predict = estimator.predict(x_test)
    print("y_predict: \n", y_predict)
    # 得出预测目标值和真实目标值之间是否相等
    print("直接比对真实值和预测值:\n", y_test == y_predict)
    # 计算准确率
    score = estimator.score(x_test, y_test)
    print("准确率为:\n", score)


def main():
    knn_iris()


if __name__ == '__main__':
    main()

九、RESULT

Python机器学习之KNN近邻算法

到此这篇关于Python机器学习之KNN近邻算法的文章就介绍到这了,更多相关Python近邻算法内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
分享一个常用的Python模拟登陆类
Mar 29 Python
Python脚本在Appium库上对移动应用实现自动化测试
Apr 17 Python
在Python中操作字典之clear()方法的使用
May 21 Python
python处理二进制数据的方法
Jun 03 Python
详解python中的 is 操作符
Dec 26 Python
python画出三角形外接圆和内切圆的方法
Jan 25 Python
python实现数据库跨服务器迁移
Apr 12 Python
python 重命名轴索引的方法
Nov 10 Python
在python下使用tensorflow判断是否存在文件夹的实例
Jun 10 Python
python 实现在shell窗口中编写print不向屏幕输出
Feb 19 Python
pycharm设置python文件模板信息过程图解
Mar 10 Python
python3 logging日志封装实例
Apr 08 Python
Python爬虫基础讲解之请求
自己搭建resnet18网络并加载torchvision自带权重的操作
May 13 #Python
如何使用flask将模型部署为服务
May 13 #Python
教你用python控制安卓手机
Python数据分析入门之数据读取与存储
May 13 #Python
python执行js代码的方法
pytorch加载预训练模型与自己模型不匹配的解决方案
May 13 #Python
You might like
用PHP与XML联手进行网站编程代码实例
2008/07/10 PHP
php循环检测目录是否存在并创建(循环创建目录)
2011/01/06 PHP
逆序二维数组插入一元素的php代码
2012/06/08 PHP
PHP错误Warning:mysql_query()解决方法
2015/10/24 PHP
PHP7引入的&quot;??&quot;和&quot;?:&quot;的区别讲解
2019/04/08 PHP
PHP实现与java 通信的插件使用教程
2019/08/11 PHP
js利用Array.splice实现Array的insert/remove
2009/01/13 Javascript
jQuery AnythingSlider滑动效果插件
2010/02/07 Javascript
JavaScript 布尔操作符解析  &amp;&amp; || !
2012/08/10 Javascript
使用GruntJS构建Web程序之合并压缩篇
2014/06/06 Javascript
JQuery实现的购物车功能(可以减少或者添加商品并自动计算价格)
2015/01/13 Javascript
使用javascript将时间转换成今天,昨天,前天等格式
2015/06/25 Javascript
Bootstrap每天必学之表格
2015/11/23 Javascript
jquery实现倒计时功能
2015/12/28 Javascript
详解javascript实现瀑布流列式布局
2016/01/29 Javascript
javascript模块化简单解析
2016/04/07 Javascript
vue.js表格组件开发的实例详解
2016/10/12 Javascript
addEventListener()与removeEventListener()解析
2017/04/20 Javascript
详解如何使用webpack+es6开发angular1.x
2017/08/16 Javascript
使用JavaScript破解web
2018/09/28 Javascript
js动态获取时间的方法分析
2019/08/02 Javascript
[02:23]2016国际邀请赛中国区预选赛wings晋级之路
2016/06/29 DOTA
学习python之编写简单简单连接数据库并执行查询操作
2016/02/27 Python
Python随机生成带特殊字符的密码
2016/03/02 Python
Python基于opencv调用摄像头获取个人图片的实现方法
2019/02/21 Python
浅谈python新式类和旧式类区别
2019/04/26 Python
CSS3 实现倒计时效果
2020/11/25 HTML / CSS
英国度假别墅预订:Sykes Cottages
2017/06/12 全球购物
国家助学金获奖感言
2014/01/31 职场文书
5.12护士节演讲稿
2014/04/30 职场文书
保研推荐信
2014/05/09 职场文书
道德大讲堂实施方案
2014/05/14 职场文书
2015年绩效考核工作总结
2015/05/23 职场文书
2015年审计人员工作总结
2015/05/26 职场文书
2019财务转正述职报告
2019/06/27 职场文书
​(迎国庆)作文之我爱我的祖国
2019/09/19 职场文书