Python实现的Kmeans++算法实例


Posted in Python onApril 26, 2014

1、从Kmeans说起

Kmeans是一个非常基础的聚类算法,使用了迭代的思想,关于其原理这里不说了。下面说一下如何在matlab中使用kmeans算法。

创建7个二维的数据点:

x=[randn(3,2)*.4;randn(4,2)*.5+ones(4,1)*[4 4]];

使用kmeans函数:
class = kmeans(x, 2);

x是数据点,x的每一行代表一个数据;2指定要有2个中心点,也就是聚类结果要有2个簇。 class将是一个具有70个元素的列向量,这些元素依次对应70个数据点,元素值代表着其对应的数据点所处的分类号。某次运行后,class的值是:
 2 
 2
 2
 1
 1
 1
 1

这说明x的前三个数据点属于簇2,而后四个数据点属于簇1。 kmeans函数也可以像下面这样使用:
>> [class, C, sumd, D] = kmeans(x, 2)
class =
     2
     2
     2
     1
     1
     1
     1
C =
    4.0629    4.0845
   -0.1341    0.1201
sumd =
    1.2017
    0.2939
D =
   34.3727    0.0184
   29.5644    0.1858
   36.3511    0.0898
    0.1247   37.4801
    0.7537   24.0659
    0.1979   36.7666
    0.1256   36.2149

class依旧代表着每个数据点的分类;C包含最终的中心点,一行代表一个中心点;sumd代表着每个中心点与所属簇内各个数据点的距离之和;D的每一行也对应一个数据点,行中的数值依次是该数据点与各个中心点之间的距离,Kmeans默认使用的距离是欧几里得距离(参考资料[3])的平方值。kmeans函数使用的距离,也可以是曼哈顿距离(L1-距离),以及其他类型的距离,可以通过添加参数指定。

kmeans有几个缺点(这在很多资料上都有说明):

1、最终簇的类别数目(即中心点或者说种子点的数目)k并不一定能事先知道,所以如何选一个合适的k的值是一个问题。
2、最开始的种子点的选择的好坏会影响到聚类结果。
3、对噪声和离群点敏感。
4、等等。

2、kmeans++算法的基本思路

kmeans++算法的主要工作体现在种子点的选择上,基本原则是使得各个种子点之间的距离尽可能的大,但是又得排除噪声的影响。 以下为基本思路:

1、从输入的数据点集合(要求有k个聚类)中随机选择一个点作为第一个聚类中心
2、对于数据集中的每一个点x,计算它与最近聚类中心(指已选择的聚类中心)的距离D(x)
3、选择一个新的数据点作为新的聚类中心,选择的原则是:D(x)较大的点,被选取作为聚类中心的概率较大
4、重复2和3直到k个聚类中心被选出来
5、利用这k个初始的聚类中心来运行标准的k-means算法

假定数据点集合X有n个数据点,依次用X(1)、X(2)、……、X(n)表示,那么,在第2步中依次计算每个数据点与最近的种子点(聚类中心)的距离,依次得到D(1)、D(2)、……、D(n)构成的集合D。在D中,为了避免噪声,不能直接选取值最大的元素,应该选择值较大的元素,然后将其对应的数据点作为种子点。

如何选择值较大的元素呢,下面是一种思路(暂未找到最初的来源,在资料[2]等地方均有提及,笔者换了一种让自己更好理解的说法): 把集合D中的每个元素D(x)想象为一根线L(x),线的长度就是元素的值。将这些线依次按照L(1)、L(2)、……、L(n)的顺序连接起来,组成长线L。L(1)、L(2)、……、L(n)称为L的子线。根据概率的相关知识,如果我们在L上随机选择一个点,那么这个点所在的子线很有可能是比较长的子线,而这个子线对应的数据点就可以作为种子点。下文中kmeans++的两种实现均是这个原理。

3、python版本的kmeans++

在http://rosettacode.org/wiki/K-means%2B%2B_clustering 中能找到多种编程语言版本的Kmeans++实现。下面的内容是基于python的实现(中文注释是笔者添加的):

from math import pi, sin, cos
from collections import namedtuple
from random import random, choice
from copy import copy
try:
    import psyco
    psyco.full()
except ImportError:
    pass
FLOAT_MAX = 1e100
class Point:
    __slots__ = ["x", "y", "group"]
    def __init__(self, x=0.0, y=0.0, group=0):
        self.x, self.y, self.group = x, y, group
def generate_points(npoints, radius):
    points = [Point() for _ in xrange(npoints)]
    # note: this is not a uniform 2-d distribution
    for p in points:
        r = random() * radius
        ang = random() * 2 * pi
        p.x = r * cos(ang)
        p.y = r * sin(ang)
    return points
def nearest_cluster_center(point, cluster_centers):
    """Distance and index of the closest cluster center"""
    def sqr_distance_2D(a, b):
        return (a.x - b.x) ** 2  +  (a.y - b.y) ** 2
    min_index = point.group
    min_dist = FLOAT_MAX
    for i, cc in enumerate(cluster_centers):
        d = sqr_distance_2D(cc, point)
        if min_dist > d:
            min_dist = d
            min_index = i
    return (min_index, min_dist)
'''
points是数据点,nclusters是给定的簇类数目
cluster_centers包含初始化的nclusters个中心点,开始都是对象->(0,0,0)
'''
def kpp(points, cluster_centers):
    cluster_centers[0] = copy(choice(points)) #随机选取第一个中心点
    d = [0.0 for _ in xrange(len(points))]  #列表,长度为len(points),保存每个点离最近的中心点的距离
    for i in xrange(1, len(cluster_centers)):  # i=1...len(c_c)-1
        sum = 0
        for j, p in enumerate(points):
            d[j] = nearest_cluster_center(p, cluster_centers[:i])[1] #第j个数据点p与各个中心点距离的最小值
            sum += d[j]
        sum *= random()
        for j, di in enumerate(d):
            sum -= di
            if sum > 0:
                continue
            cluster_centers[i] = copy(points[j])
            break
    for p in points:
        p.group = nearest_cluster_center(p, cluster_centers)[0]
'''
points是数据点,nclusters是给定的簇类数目
'''
def lloyd(points, nclusters):
    cluster_centers = [Point() for _ in xrange(nclusters)]  #根据指定的中心点个数,初始化中心点,均为(0,0,0)
    # call k++ init
    kpp(points, cluster_centers)   #选择初始种子点
    # 下面是kmeans
    lenpts10 = len(points) >> 10
    changed = 0
    while True:
        # group element for centroids are used as counters
        for cc in cluster_centers:
            cc.x = 0
            cc.y = 0
            cc.group = 0
        for p in points:
            cluster_centers[p.group].group += 1  #与该种子点在同一簇的数据点的个数
            cluster_centers[p.group].x += p.x
            cluster_centers[p.group].y += p.y
        for cc in cluster_centers:    #生成新的中心点
            cc.x /= cc.group
            cc.y /= cc.group
        # find closest centroid of each PointPtr
        changed = 0  #记录所属簇发生变化的数据点的个数
        for p in points:
            min_i = nearest_cluster_center(p, cluster_centers)[0]
            if min_i != p.group:
                changed += 1
                p.group = min_i
        # stop when 99.9% of points are good
        if changed <= lenpts10:
            break
    for i, cc in enumerate(cluster_centers):
        cc.group = i
    return cluster_centers
def print_eps(points, cluster_centers, W=400, H=400):
    Color = namedtuple("Color", "r g b");
    colors = []
    for i in xrange(len(cluster_centers)):
        colors.append(Color((3 * (i + 1) % 11) / 11.0,
                            (7 * i % 11) / 11.0,
                            (9 * i % 11) / 11.0))
    max_x = max_y = -FLOAT_MAX
    min_x = min_y = FLOAT_MAX
    for p in points:
        if max_x < p.x: max_x = p.x
        if min_x > p.x: min_x = p.x
        if max_y < p.y: max_y = p.y
        if min_y > p.y: min_y = p.y
    scale = min(W / (max_x - min_x),
                H / (max_y - min_y))
    cx = (max_x + min_x) / 2
    cy = (max_y + min_y) / 2
    print "%%!PS-Adobe-3.0\n%%%%BoundingBox: -5 -5 %d %d" % (W + 10, H + 10)
    print ("/l {rlineto} def /m {rmoveto} def\n" +
           "/c { .25 sub exch .25 sub exch .5 0 360 arc fill } def\n" +
           "/s { moveto -2 0 m 2 2 l 2 -2 l -2 -2 l closepath " +
           "   gsave 1 setgray fill grestore gsave 3 setlinewidth" +
           " 1 setgray stroke grestore 0 setgray stroke }def")
    for i, cc in enumerate(cluster_centers):
        print ("%g %g %g setrgbcolor" %
               (colors[i].r, colors[i].g, colors[i].b))
        for p in points:
            if p.group != i:
                continue
            print ("%.3f %.3f c" % ((p.x - cx) * scale + W / 2,
                                    (p.y - cy) * scale + H / 2))
        print ("\n0 setgray %g %g s" % ((cc.x - cx) * scale + W / 2,
                                        (cc.y - cy) * scale + H / 2))
    print "\n%%%%EOF"
def main():
    npoints = 30000
    k = 7 # # clusters
    points = generate_points(npoints, 10)
    cluster_centers = lloyd(points, k)
    print_eps(points, cluster_centers)
main()

上述代码实现的算法是针对二维数据的,所以Point对象有三个属性,分别是在x轴上的值、在y轴上的值、以及所属的簇的标识。函数lloyd是kmeans++算法的整体实现,其先是通过kpp函数选取合适的种子点,然后对数据集实行kmeans算法进行聚类。kpp函数的实现完全符合上述kmeans++的基本思路的2、3、4步。

4、matlab版本的kmeans++

function [L,C] = kmeanspp(X,k)
%KMEANS Cluster multivariate data using the k-means++ algorithm.
%   [L,C] = kmeans_pp(X,k) produces a 1-by-size(X,2) vector L with one class
%   label per column in X and a size(X,1)-by-k matrix C containing the
%   centers corresponding to each class.
%   Version: 2013-02-08
%   Authors: Laurent Sorber (Laurent.Sorber@cs.kuleuven.be)
L = [];
L1 = 0;
while length(unique(L)) ~= k
    % The k-means++ initialization.
    C = X(:,1+round(rand*(size(X,2)-1))); %size(X,2)是数据集合X的数据点的数目,C是中心点的集合
    L = ones(1,size(X,2));
    for i = 2:k
        D = X-C(:,L); %-1 
        D = cumsum(sqrt(dot(D,D,1))); %将每个数据点与中心点的距离,依次累加
        if D(end) == 0, C(:,i:k) = X(:,ones(1,k-i+1)); return; end
        C(:,i) = X(:,find(rand < D/D(end),1)); %find的第二个参数表示返回的索引的数目
        [~,L] = max(bsxfun(@minus,2*real(C'*X),dot(C,C,1).')); %碉堡了,这句,将每个数据点进行分类。
    end
    % The k-means algorithm.
    while any(L ~= L1)
        L1 = L;
        for i = 1:k, l = L==i; C(:,i) = sum(X(:,l),2)/sum(l); end
        [~,L] = max(bsxfun(@minus,2*real(C'*X),dot(C,C,1).'),[],1);
    end
end

这个函数的实现有些特殊,参数X是数据集,但是是将每一列看做一个数据点,参数k是指定的聚类数。返回值L标记了每个数据点的所属分类,返回值C保存了最终形成的中心点(一列代表一个中心点)。测试一下:

>> x=[randn(3,2)*.4;randn(4,2)*.5+ones(4,1)*[4 4]]
x =
   -0.0497    0.5669
    0.5959    0.2686
    0.5636   -0.4830
    4.3586    4.3634
    4.8151    3.8483
    4.2444    4.1469
    4.5173    3.6064
>> [L, C] = kmeanspp(x',2)
L =
     2     2     2     1     1     1     1
C =
    4.4839    0.3699
    3.9913    0.1175

好了,现在开始一点点理解这个实现,顺便巩固一下matlab知识。

unique函数用来获取一个矩阵中的不同的值,示例:

>> unique([1 3 3 4 4 5])
ans =
     1     3     4     5
>> unique([1 3 3 ; 4 4 5])
ans =
     1
     3
     4
     5

所以循环 while length(unique(L)) ~= k 以得到了k个聚类为结束条件,不过一般情况下,这个循环一次就结束了,因为重点在这个循环中。

rand是返回在(0,1)这个区间的一个随机数。在注释%-1所在行,C被扩充了,被扩充的方法类似于下面:

>> C =[];
>> C(1,1) = 1
C =
     1
>> C(2,1) = 2
C =
     1
     2
>> C(:,[1 1 1 1])
ans =
     1     1     1     1
     2     2     2     2
>> C(:,[1 1 1 1 2])
Index exceeds matrix dimensions.

C中第二个参数的元素1,其实是代表C的第一列数据,之所以在值2时候出现Index exceeds matrix dimensions.的错误,是因为C本身没有第二列。如果C有第二列了:

>> C(2,2) = 3;
>> C(2,2) = 4;
>> C(:,[1 1 1 1 2])
ans =
     1     1     1     1     3
     2     2     2     2     4

dot函数是将两个矩阵点乘,然后把结果在某一维度相加:
>> TT = [1 2 3 ; 4 5 6];
>> dot(TT,TT)
ans =
    17    29    45
>> dot(TT,TT,1 )
ans =
    17    29    45

<code>cumsum</code>是累加函数:
>> cumsum([1 2 3])
ans =
     1     3     6
>> cumsum([1 2 3; 4 5 6])
ans =
     1     2     3
     5     7     9

max函数可以返回两个值,第二个代表的是max数的索引位置:
>> [~, L] = max([1 2 3])
L =
     3
>> [~,L] = max([1 2 3;2 3 4])
L =
     2     2     2

其中~是占位符。

关于bsxfun函数,官方文档指出:

C = bsxfun(fun,A,B) applies the element-by-element binary operation specified by the function handle fun to arrays A and B, with singleton expansion enabled

其中参数fun是函数句柄,关于函数句柄见资料[9]。下面是bsxfun的一个示例:
>> A= [1 2 3;2 3 4]
A =
     1     2     3
     2     3     4
>> B=[6;7]
B =
     6
     7
>> bsxfun(@minus,A,B)
ans =
    -5    -4    -3
    -5    -4    -3

对于:
[~,L] = max(bsxfun(@minus,2*real(C'*X),dot(C,C,1).'));

max的参数是这样一个矩阵,矩阵有n列,n也是数据点的个数,每一列代表着对应的数据点与各个中心点之间的距离的相反数。不过这个距离有些与众不同,算是欧几里得距离的变形。

假定数据点是2维的,某个数据点为(x1,y1),某个中心点为(c1,d1),那么通过bsxfun(@minus,2real(C'X),dot(C,C,1).')的计算,数据点与中心点的距离为2c1x1 + 2d1y1 -c1.^2 - c2.^2,可以变换为x1.^2 + y1.^2 - (c1-x1).^2 - (d1-y1).^2。对于每一列而言,由于是数据点与各个中心点之间的计算,所以可以忽略x1.^2 + y1.^2,最终计算结果是欧几里得距离的平方的相反数。这也说明了使用max的合理性,因为一个数据点的所属簇取决于与其距离最近的中心点,若将距离取相反数,则应该是值最大的那个点。

Python 相关文章推荐
python使用scrapy解析js示例
Jan 23 Python
解决pip install的时候报错timed out的问题
Jun 12 Python
python中单下划线_的常见用法总结
Jul 10 Python
对Python协程之异步同步的区别详解
Feb 19 Python
seek引发的python文件读写的问题及解决
Jul 26 Python
Python中Unittest框架的具体使用
Aug 27 Python
python GUI库图形界面开发之PyQt5结合Qt Designer创建信号与槽的详细方法与实例
Mar 08 Python
python中使用you-get库批量在线下载bilibili视频的教程
Mar 10 Python
利用django model save方法对未更改的字段依然进行了保存
Mar 28 Python
解决python对齐错误的方法
Jul 16 Python
python3实现将json对象存入Redis以及数据的导入导出
Jul 16 Python
python双向链表实例详解
May 25 Python
爬山算法简介和Python实现实例
Apr 26 #Python
Python操作sqlite3快速、安全插入数据(防注入)的实例
Apr 26 #Python
python实现的二叉树算法和kmp算法实例
Apr 25 #Python
python中的__init__ 、__new__、__call__小结
Apr 25 #Python
Python yield 小结和实例
Apr 25 #Python
python计数排序和基数排序算法实例
Apr 25 #Python
python处理圆角图片、圆形图片的例子
Apr 25 #Python
You might like
一个php作的文本留言本的例子(三)
2006/10/09 PHP
PHP最常用的2种设计模式工厂模式和单例模式介绍
2012/08/14 PHP
PHP容易忘记的知识点分享
2013/04/30 PHP
控制PHP的输出:缓存并压缩动态页面
2013/06/11 PHP
php echo, print, print_r, sprintf, var_dump, var_expor的使用区别
2013/06/20 PHP
php错误日志简单配置方法
2016/07/11 PHP
再次更新!MSClass (Class Of Marquee Scroll通用不间断滚动JS封装类 Ver 1.6)
2007/02/05 Javascript
jQuery标签替换函数replaceWith()的使用例子
2014/08/28 Javascript
jQuery简单实现input文本框内灰色提示文本效果的方法
2015/12/02 Javascript
Bootstrap缩略图与警告框学习使用
2017/02/08 Javascript
js实现音频控制进度条功能
2017/04/01 Javascript
JS运动特效之完美运动框架实例分析
2018/01/24 Javascript
Vue 后台管理类项目兼容IE9+的方法示例
2019/02/20 Javascript
vue项目打包上传github并制作预览链接(pages)
2019/04/19 Javascript
vuejs数据超出单行显示更多,点击展开剩余数据实例
2019/05/05 Javascript
Vue模板语法中数据绑定的实例代码
2019/05/17 Javascript
createObjectURL方法实现本地图片预览
2019/09/30 Javascript
原生javascript制作的拼图游戏实现方法详解
2020/02/23 Javascript
ant-design表单处理和常用方法及自定义验证操作
2020/10/27 Javascript
[01:07:46]完美世界DOTA2联赛循环赛 Magma vs IO BO2第二场 11.01
2020/11/02 DOTA
Python中类的定义、继承及使用对象实例详解
2015/04/30 Python
python简单实现基数排序算法
2015/05/16 Python
Python多进程同步简单实现代码
2016/04/27 Python
Java Web开发过程中登陆模块的验证码的实现方式总结
2016/05/25 Python
Python3中lambda表达式与函数式编程讲解
2019/01/14 Python
Django中如何防范CSRF跨站点请求伪造攻击的实现
2019/04/28 Python
pycharm第三方库安装失败的问题及解决经验分享
2020/05/09 Python
python相对企业语言优势在哪
2020/06/12 Python
Python定义一个Actor任务
2020/07/29 Python
python 实现朴素贝叶斯算法的示例
2020/09/30 Python
Python实现淘宝秒杀功能的示例代码
2021/01/19 Python
利用canvas实现图片下载功能来实现浏览器兼容问题
2019/05/31 HTML / CSS
大客户销售经理职责
2013/12/04 职场文书
餐饮收银员岗位职责
2014/02/07 职场文书
五四青年节演讲稿
2014/05/26 职场文书
Go中的条件语句Switch示例详解
2021/08/23 Golang