python机器学习实战之树回归详解


Posted in Python onDecember 20, 2017

本文实例为大家分享了树回归的具体代码,供大家参考,具体内容如下

#-*- coding:utf-8 -*- 
#!/usr/bin/python 
''''' 
回归树  连续值回归预测 的 回归树 
''' 
# 测试代码 
# import regTrees as RT RT.RtTreeTest() RT.RtTreeTest('ex0.txt') RT.RtTreeTest('ex2.txt') 
# import regTrees as RT RT.RtTreeTest('ex2.txt',ops=(10000,4)) 
# import regTrees as RT RT.pruneTest() 
# 模型树 测试 
# import regTrees as RT RT.modeTreeTest(ops=(1,10) 
# 模型回归树和普通回归树 效果比较 计算相关系数  
# import regTrees as RT RT.MRTvsSRT() 
from numpy import * 
 
 
# Tab 键值分隔的数据 提取成 列表数据集 成浮点型数据 
def loadDataSet(fileName):   #   
  dataMat = []        # 目标数据集 列表 
  fr = open(fileName) 
  for line in fr.readlines(): 
    curLine = line.strip().split('\t') 
    fltLine = map(float,curLine) #转换成浮点型数据 
    dataMat.append(fltLine) 
  return dataMat 
 
# 按特征值 的数据集二元切分  特征(列)  对应的值 
# 某一列的值大于value值的一行样本全部放在一个矩阵里,其余放在另一个矩阵里 
def binSplitDataSet(dataSet, feature, value): 
  mat0 = dataSet[nonzero(dataSet[:,feature] > value)[0],:][0] # 数组过滤 
  mat1 = dataSet[nonzero(dataSet[:,feature] <= value)[0],:][0] #  
  return mat0,mat1 
 
# 常量叶子节点 
def regLeaf(dataSet):# 最后一列为标签 为数的叶子节点 
  return mean(dataSet[:,-1])# 目标变量的均值 
# 方差 
def regErr(dataSet): 
  return var(dataSet[:,-1]) * shape(dataSet)[0]# 目标变量的平方误差 * 样本个数(行数)的得到总方差 
 
# 选择最优的 分裂属性和对应的大小 
def chooseBestSplit(dataSet, leafType=regLeaf, errType=regErr, ops=(1,4)): 
  tolS = ops[0] # 允许的误差下降值 
  tolN = ops[1] # 切分的最少样本数量 
  if len(set(dataSet[:,-1].T.tolist()[0])) == 1: # 特征剩余数量为1 则返回 
    return None, leafType(dataSet)       #### 返回 1 ####  
  m,n = shape(dataSet) # 当前数据集大小 形状 
  S = errType(dataSet) # 当前数据集误差 均方误差 
  bestS = inf; bestIndex = 0; bestValue = 0 
  for featIndex in range(n-1):# 遍历 可分裂特征 
    for splitVal in set(dataSet[:,featIndex]):# 遍历对应 特性的 属性值 
      mat0, mat1 = binSplitDataSet(dataSet, featIndex, splitVal)# 进行二元分割 
      if (shape(mat0)[0] < tolN) or (shape(mat1)[0] < tolN): continue #样本数量 小于设定值,则不切分 
      newS = errType(mat0) + errType(mat1)# 二元分割后的 均方差 
      if newS < bestS: # 弱比分裂前小 则保留这个分类 
        bestIndex = featIndex 
        bestValue = splitVal 
        bestS = newS 
  if (S - bestS) < tolS: # 弱分裂后 比 分裂前样本方差 减小的不多 也不进行切分 
    return None, leafType(dataSet)       #### 返回 2 ####  
  mat0, mat1 = binSplitDataSet(dataSet, bestIndex, bestValue) 
  if (shape(mat0)[0] < tolN) or (shape(mat1)[0] < tolN): #样本数量 小于设定值,则不切分 
    return None, leafType(dataSet)       #### 返回 3 ####  
  return bestIndex,bestValue # 返回最佳的 分裂属性 和 对应的值 
 
# 创建回归树 numpy数组数据集 叶子函数  误差函数  用户设置参数(最小样本数量 以及最小误差下降间隔) 
def createTree(dataSet, leafType=regLeaf, errType=regErr, ops=(1,4)): 
 # 找到最佳的待切分特征和对应 的值 
  feat, val = chooseBestSplit(dataSet, leafType, errType, ops)# 
 # 停止条件 该节点不能再分,该节点为叶子节点 
  if feat == None: return val  
  retTree = {} 
  retTree['spInd'] = feat #特征 
  retTree['spVal'] = val #值 
 # 执行二元切分  
  lSet, rSet = binSplitDataSet(dataSet, feat, val)# 二元切分 左树 右树 
 # 创建左树 
  retTree['left'] = createTree(lSet, leafType, errType, ops)  # 左树 最终返回子叶子节点 的属性值 
 # 创建右树 
  retTree['right'] = createTree(rSet, leafType, errType, ops) # 右树 
  return retTree  
 
# 未进行后剪枝的回归树测试  
def RtTreeTest(filename='ex00.txt',ops=(1,4)): 
  MyDat = loadDataSet(filename) # ex00.txt y = w*x 两维  ex0.txt y = w*x+b 三维 
  MyMat = mat(MyDat) 
  print createTree(MyMat,ops=ops) 
# 判断是不是树 (按字典形式存储) 
def isTree(obj): 
  return (type(obj).__name__=='dict') 
 
# 返回树的平均值 塌陷处理 
def getMean(tree): 
  if isTree(tree['right']):  
  tree['right'] = getMean(tree['right']) 
  if isTree(tree['left']):  
  tree['left'] = getMean(tree['left']) 
  return (tree['left']+tree['right'])/2.0 # 两个叶子节点的 平均值 
 
# 后剪枝  待剪枝的树  剪枝所需的测试数据 
def prune(tree, testData): 
  if shape(testData)[0] == 0:  
  return getMean(tree) #没有测试数据 返回 
  if (isTree(tree['right']) or isTree(tree['left'])): # 如果回归树的左右两边是树 
    lSet, rSet = binSplitDataSet(testData, tree['spInd'], tree['spVal'])#对测试数据 进行切分 
  if isTree(tree['left']):  
  tree['left'] = prune(tree['left'], lSet)  # 对左树进行剪枝 
  if isTree(tree['right']):  
  tree['right'] = prune(tree['right'], rSet)# 对右树进行剪枝 
  if not isTree(tree['left']) and not isTree(tree['right']):#两边都是叶子 
    lSet, rSet = binSplitDataSet(testData, tree['spInd'], tree['spVal'])#对测试数据 进行切分 
    errorNoMerge = sum(power(lSet[:,-1] - tree['left'],2)) +\ 
      sum(power(rSet[:,-1] - tree['right'],2)) # 对两边叶子合并前计算 误差  
    treeMean = (tree['left']+tree['right'])/2.0 # 合并后的 叶子 均值 
    errorMerge = sum(power(testData[:,-1] - treeMean,2))# 合并后 的误差 
    if errorMerge < errorNoMerge: # 合并后的误差小于合并前的误差 
      print "merging"      # 说明合并后的树 误差更小 
      return treeMean      # 返回两个叶子 的均值 作为 合并后的叶子节点 
    else: return tree 
  else: return tree 
   
def pruneTest(): 
  MyDat = loadDataSet('ex2.txt')  
  MyMat = mat(MyDat) 
  MyTree = createTree(MyMat,ops=(0,1))  # 为了得到 最大的树 误差设置为0 个数设置为1 即不进行预剪枝 
  MyDatTest = loadDataSet('ex2test.txt') 
  MyMatTest = mat(MyDatTest) 
  print prune(MyTree,MyMatTest) 
 
 
######叶子节点为线性模型的模型树######### 
# 线性模型 
def linearSolve(dataSet):   
  m,n = shape(dataSet) # 数据集大小 
  X = mat(ones((m,n))) # 自变量 
  Y = mat(ones((m,1))) # 目标变量  
  X[:,1:n] = dataSet[:,0:n-1]# 样本数据集合 
  Y = dataSet[:,-1]     # 标签 
  # 线性模型 求解 
  xTx = X.T*X         
  if linalg.det(xTx) == 0.0: 
    raise NameError('行列式值为零,不能计算逆矩阵,可适当增加ops的第二个值') 
  ws = xTx.I * (X.T * Y) 
  return ws,X,Y 
 
# 模型叶子节点 
def modelLeaf(dataSet):  
  ws,X,Y = linearSolve(dataSet) 
  return ws 
 
# 计算模型误差 
def modelErr(dataSet): 
  ws,X,Y = linearSolve(dataSet) 
  yHat = X * ws 
  return sum(power(Y - yHat,2)) 
 
# 模型树测试 
def modeTreeTest(filename='ex2.txt',ops=(1,4)): 
  MyDat = loadDataSet(filename) #  
  MyMat = mat(MyDat) 
  print createTree(MyMat,leafType=modelLeaf, errType=modelErr,ops=ops)#带入线性模型 和相应 的误差计算函数 
 
 
# 模型效果计较 
# 线性叶子节点 预测计算函数 直接返回 树叶子节点 值 
def regTreeEval(model, inDat): 
  return float(model) 
 
def modelTreeEval(model, inDat): 
  n = shape(inDat)[1] 
  X = mat(ones((1,n+1)))# 增加一列 
  X[:,1:n+1]=inDat 
  return float(X*model) # 返回 值乘以 线性回归系数 
 
# 树预测函数 
def treeForeCast(tree, inData, modelEval=regTreeEval): 
  if not isTree(tree):  
  return modelEval(tree, inData) # 返回 叶子节点 预测值 
  if inData[tree['spInd']] > tree['spVal']:   # 左树 
    if isTree(tree['left']):  
    return treeForeCast(tree['left'], inData, modelEval)# 还是树 则递归调用 
    else:  
    return modelEval(tree['left'], inData) # 计算叶子节点的值 并返回 
  else: 
    if isTree(tree['right']):         # 右树 
    return treeForeCast(tree['right'], inData, modelEval) 
    else:  
    return modelEval(tree['right'], inData)# 计算叶子节点的值 并返回 
 
# 得到预测值     
def createForeCast(tree, testData, modelEval=regTreeEval): 
  m=len(testData) 
  yHat = mat(zeros((m,1)))#预测标签 
  for i in range(m): 
    yHat[i,0] = treeForeCast(tree, mat(testData[i]), modelEval) 
  return yHat 
 
# 常量回归树和线性模型回归树的预测结果比较 
def MRTvsSRT(): 
  TestMat = mat(loadDataSet('bikeSpeedVsIq_test.txt')) 
  TrainMat = mat(loadDataSet('bikeSpeedVsIq_train.txt')) 
# 普通回归树 预测结果 
  # 得到普通回归树树 
  StaTree = createTree(TrainMat, ops=(1,20)) 
  # 得到预测结果 
  StaYHat = createForeCast(StaTree, TestMat[:,0], regTreeEval)# 第一列为 自变量 
  # 预测结果和真实标签的相关系数 
  StaCorr = corrcoef(StaYHat, TestMat[:,1], rowvar=0)[0,1] # NumPy 库函数  
# 模型回归树 预测结果 
  # 得到模型回归树 
  ModeTree = createTree(TrainMat,leafType=modelLeaf, errType=modelErr, ops=(1,20)) 
  # 得到预测结果 
  ModeYHat = createForeCast(ModeTree, TestMat[:,0], modelTreeEval)  
  # 预测结果和真实标签的相关系数 
  ModeCorr = corrcoef(ModeYHat, TestMat[:,1], rowvar=0)[0,1] # NumPy 库函数   
  print "普通回归树 预测结果的相关系数R2: %f" %(StaCorr)                        
  print "模型回归树 预测结果的相关系数R2: %f" %(ModeCorr) 
  if ModeCorr>StaCorr: 
  print "模型回归树效果优于普通回归树" 
  else: 
  print "回归回归树效果优于模型普通树"

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python 控制语句
Nov 03 Python
Python使用matplotlib的pie函数绘制饼状图功能示例
Jan 08 Python
python获取代码运行时间的实例代码
Jun 11 Python
opencv python 图像去噪的实现方法
Aug 31 Python
Python解析、提取url关键字的实例详解
Dec 17 Python
梅尔频率倒谱系数(mfcc)及Python实现
Jun 18 Python
ORM Django 终端打印 SQL 语句实现解析
Aug 09 Python
np.dot()函数的用法详解
Jan 17 Python
python3中使用__slots__限定实例属性操作分析
Feb 14 Python
Python flask路由间传递变量实例详解
Jun 03 Python
python mongo 向数据中的数组类型新增数据操作
Dec 05 Python
详解Django中 render() 函数的使用方法
Apr 22 Python
使用python 和 lint 删除项目无用资源的方法
Dec 20 #Python
python机器学习实战之K均值聚类
Dec 20 #Python
Python绘制3d螺旋曲线图实例代码
Dec 20 #Python
python机器学习实战之最近邻kNN分类器
Dec 20 #Python
python3.6 +tkinter GUI编程 实现界面化的文本处理工具(推荐)
Dec 20 #Python
浅谈Python实现Apriori算法介绍
Dec 20 #Python
利用Python如何生成hash值示例详解
Dec 20 #Python
You might like
php面向对象全攻略 (十一)__toString()用法 克隆对象 __call处理调用错误
2009/09/30 PHP
浅析php适配器模式(Adapter)
2014/11/25 PHP
php微信公众号开发(3)php实现简单微信文本通讯
2016/12/15 PHP
Laravel Intervention/image图片处理扩展包的安装、使用与可能遇到的坑详解
2017/11/14 PHP
PHP下载文件函数与用法示例
2019/09/27 PHP
PHP数据源架构模式之表入口模式实例分析
2020/01/23 PHP
jquery select 设置默认选中的示例代码
2014/02/07 Javascript
排序算法的javascript实现与讲解(99js手记)
2014/09/28 Javascript
JavaScript获取Url里的参数
2014/12/18 Javascript
js+css实现有立体感的按钮式文字竖排菜单效果
2015/09/01 Javascript
动态生成的DOM不会触发onclick事件的原因及解决方法
2016/08/06 Javascript
JavaScript获取当前时间向前推三个月的方法示例
2017/02/04 Javascript
使用ES6语法重构React代码详解
2017/05/09 Javascript
使用 Vue.js 仿百度搜索框的实例代码
2017/05/09 Javascript
React如何利用相对于根目录进行引用组件详解
2017/10/09 Javascript
bootstrap动态调用select下拉框的实例代码
2018/08/09 Javascript
vue 实现在函数中触发路由跳转的示例
2018/09/01 Javascript
详解JavaScript的数据类型以及数据类型的转换
2019/04/20 Javascript
layui复选框限制选择个数的方法
2019/09/18 Javascript
Echarts实现单条折线可拖拽效果
2019/12/19 Javascript
vue组件内部引入外部js文件的方法
2020/01/18 Javascript
es6数组的flat(),flatMap()函数用法实例分析
2020/04/18 Javascript
解决vue使用vant轮播组件swipe + flex时文字抖动问题
2021/01/07 Vue.js
[04:31]2016国际邀请赛中国区预选赛妖精采访
2016/06/27 DOTA
Python安装模块的常见问题及解决方法
2018/02/05 Python
Python中Proxypool库的安装与配置
2018/10/19 Python
Python定时发送天气预报邮件代码实例
2019/09/09 Python
Pycharm 2019 破解激活方法图文详解
2019/10/11 Python
Python partial函数原理及用法解析
2019/12/11 Python
Sofmap官网:日本著名的数码电器专卖店
2017/05/19 全球购物
威尔逊皮革:Wilsons Leather
2018/12/07 全球购物
医药销售求职信范文
2014/02/01 职场文书
学雷锋献爱心倡议书
2015/04/27 职场文书
供应商食品安全承诺书
2015/04/29 职场文书
2015年小学总务工作总结
2015/07/21 职场文书
Mysql MVCC机制原理详解
2021/04/20 MySQL