python机器学习实战之K均值聚类


Posted in Python onDecember 20, 2017

本文实例为大家分享了python K均值聚类的具体代码,供大家参考,具体内容如下

#-*- coding:utf-8 -*- 
#!/usr/bin/python 
 
''''' 
k Means K均值聚类 
''' 
# 测试 
# K均值聚类   import kMeans as KM KM.kMeansTest() 
# 二分K均值聚类 import kMeans as KM KM.biKMeansTest() 
# 地理位置 二分K均值聚类 import kMeans as KM KM.clusterClubs() 
from numpy import * 
 
# 导入数据集 
def loadDataSet(fileName):   #  
  dataMat = []        #  
  fr = open(fileName) 
  for line in fr.readlines(): # 每一行 
    curLine = line.strip().split('\t')# 按 Tab键 分割成 列表 
    fltLine = map(float,curLine)   # 映射成 浮点型 
    dataMat.append(fltLine)      # 放入数据集里 
  return dataMat 
 
# 计算欧几里的距离 
def distEclud(vecA, vecB): 
  return sqrt(sum(power(vecA - vecB, 2))) #la.norm(vecA-vecB) 
 
# 初始构建质心(随机) 数据集 质心个数 
def randCent(dataSet, k): 
  n = shape(dataSet)[1] # 样本特征维度 
  centroids = mat(zeros((k,n))) # 初始化 k个 质心 
  for j in range(n):  # 每种样本特征 
    minJ = min(dataSet[:,j]) # 每种样本特征最小值 需要转换成 numpy 的mat 
    rangeJ = float(max(dataSet[:,j]) - minJ)#每种样本特征的幅值范围 
    centroids[:,j] = mat(minJ + rangeJ * random.rand(k,1)) 
    # 在每种样本的最大值和最小值间随机生成K个样本特征值 
  return centroids 
 
# 简单k均值聚类算法  
#    数据集 中心数量  距离算法      初始聚类中心算法  
def kMeans(dataSet, k, distMeas=distEclud, createCent=randCent): 
  m = shape(dataSet)[0]       # 样本个数 
  clusterAssment = mat(zeros((m,2)))# 样本标记 分配结果 第一列索引 第二列误差 
  centroids = createCent(dataSet, k)# 初始聚类中心 
  clusterChanged = True# 设置质心是否仍然发送变化 
  while clusterChanged: 
    clusterChanged = False 
    for i in range(m): #对每个样本 计算最近的中心 
    # 更新 样本所属关系 
      minDist = inf; minIndex = -1 # 距离变量 以及 最近的中心索引 
      for j in range(k): # 对每个中心 
        distJI = distMeas(centroids[j,:],dataSet[i,:])# 计算距离 
        if distJI < minDist: 
          minDist = distJI; minIndex = j# 得到最近的 中心 索引 
      if clusterAssment[i,0] != minIndex: clusterChanged = True  
      # 所属索引发生了变化 即质心还在变化,还可以优化 
      clusterAssment[i,:] = minIndex,minDist**2 # 保存 所属索引 以及距离平方 用以计算误差平方和 SSE 
    # 更新质心 
    print centroids # 每次迭代打印质心 
    for cent in range(k):#  
      ptsInClust = dataSet[nonzero(clusterAssment[:,0].A==cent)[0]]# 数组过滤 得到各个中心所属的样本 
      centroids[cent,:] = mean(ptsInClust, axis=0) # 按列求平均 得到新的中心 
  return centroids, clusterAssment# 返回质心 和各个样本分配结果 
 
def kMeansTest(k=5): 
  MyDatMat = mat(loadDataSet("testSet.txt")) 
  MyCenters, ClustAssing = kMeans(MyDatMat, k) 
 
# bisecting K-means 二分K均值算法 克服局部最优值 
def biKmeans(dataSet, k, distMeas=distEclud): 
  m = shape(dataSet)[0]       # 样本个数 
  clusterAssment = mat(zeros((m,2)))# 样本标记 分配结果 第一列索引 第二列误差 
  centroid0 = mean(dataSet, axis=0).tolist()[0]# 创建一个初始质心 
  centList =[centroid0] # 一个中心的 列表 
  for j in range(m):  # 计算初始误差 
    clusterAssment[j,1] = distMeas(mat(centroid0), dataSet[j,:])**2#每个样本与中心的距离平方 
  while (len(centList) < k):# 中心数俩个未达到指定中心数量 继续迭代 
    lowestSSE = inf    # 最小的 误差平方和 SSE 
    for i in range(len(centList)):# 对于每一个中心 
      ptsInCurrCluster = dataSet[nonzero(clusterAssment[:,0].A==i)[0],:] # 处于当前中心的样本点 
      centroidMat, splitClustAss = kMeans(ptsInCurrCluster, 2, distMeas) # 对此中心内的点进行二分类 
      # 该样本中心 二分类之后的 误差平方和 SSE 
    sseSplit = sum(splitClustAss[:,1]) 
      # 其他未划分数据集的误差平方和 SSE 
      sseNotSplit = sum(clusterAssment[nonzero(clusterAssment[:,0].A!=i)[0],1]) 
      print "sseSplit, and notSplit: ",sseSplit,sseNotSplit 
      # 划分后的误差和没有进行划分的数据集的误差为本次误差 
      if (sseSplit + sseNotSplit) < lowestSSE: # 小于上次 的 误差  
        bestCentToSplit = i # 记录应该被划分的中心 的索引 
        bestNewCents = centroidMat # 最好的新划分出来的中心 
        bestClustAss = splitClustAss.copy()# 新中心 对于的 划分记录 索引(0或1)以及 误差平方 
        lowestSSE = sseSplit + sseNotSplit # 更新总的 误差平方和 
    # 记录中心 划分 数据 
    bestClustAss[nonzero(bestClustAss[:,0].A == 1)[0],0] = len(centList) # 现有中心数量 
    bestClustAss[nonzero(bestClustAss[:,0].A == 0)[0],0] = bestCentToSplit# 最应该被划分的中心 
    print 'the bestCentToSplit is: ',bestCentToSplit 
    print 'the len of bestClustAss is: ', len(bestClustAss) 
    # 将最应该被划分的中心 替换为 划分后的 两个 中心(一个替换,另一个 append在最后添加) 
    centList[bestCentToSplit] = bestNewCents[0,:].tolist()[0]# 替换 
    centList.append(bestNewCents[1,:].tolist()[0])      # 添加 
    # 更新 样本标记 分配结果 替换 被划分中心的记录 
    clusterAssment[nonzero(clusterAssment[:,0].A == bestCentToSplit)[0],:]= bestClustAss 
  return mat(centList), clusterAssment 
 
def biKMeansTest(k=5): 
  MyDatMat = mat(loadDataSet("testSet.txt")) 
  MyCenters, ClustAssing = biKmeans(MyDatMat, k) 
 
####位置数据聚类测试##### 
# 利用雅虎的服务器将地址转换为 经度和纬度 
import urllib 
import json 
def geoGrab(stAddress, city): 
  apiStem = 'http://where.yahooapis.com/geocode?' #  
  params = {} 
  params['flags'] = 'J'    # 设置返回类型为JSON字符串  
  params['appid'] = 'aaa0VN6k' # 注册 帐号后获得 http://developer.yahoo.com 
  params['location'] = '%s %s' % (stAddress, city) # 位置信息 
  url_params = urllib.urlencode(params)# 将字典转换成可以通过URL进行传递的字符串格式 
  yahooApi = apiStem + url_params   # 加入网络地址  
  print yahooApi            # 打印 URL 
  c=urllib.urlopen(yahooApi)      # 打开 URL 
  return json.loads(c.read())     # 读取返回的jason字符串  对位置进行了编码 得到经度和纬度  
 
 
from time import sleep 
def massPlaceFind(fileName): 
  fw = open('places.txt', 'w') # 打开位置信息文件 
  for line in open(fileName).readlines():# 每一行 
    line = line.strip() 
    lineArr = line.split('\t')# 得到列表 
    retDict = geoGrab(lineArr[1], lineArr[2])# 第二列为号牌 第三列为城市 进行地址解码 
    if retDict['ResultSet']['Error'] == 0: 
      lat = float(retDict['ResultSet']['Results'][0]['latitude']) #经度 
      lng = float(retDict['ResultSet']['Results'][0]['longitude'])#纬度 
      print "%s\t%f\t%f" % (lineArr[0], lat, lng) 
      fw.write('%s\t%f\t%f\n' % (line, lat, lng)) #再写入到文件 
    else: print "error fetching" 
    sleep(1)#延迟1s 
  fw.close() 
 
# 返回地球表面两点之间的距离 单位英里 输入经纬度(度) 球面余弦定理 
def distSLC(vecA, vecB):#Spherical Law of Cosines 
  a = sin(vecA[0,1]*pi/180) * sin(vecB[0,1]*pi/180) 
  b = cos(vecA[0,1]*pi/180) * cos(vecB[0,1]*pi/180) * \ 
           cos(pi * (vecB[0,0]-vecA[0,0]) /180) 
  return arccos(a + b)*6371.0 #pi in numpy 
 
 
# 位置聚类测试 画图可视化显示 
import matplotlib 
import matplotlib.pyplot as plt 
 
def clusterClubs(numClust=5): 
  datList = [] # 样本 
  for line in open('places.txt').readlines(): 
    lineArr = line.split('\t') 
    datList.append([float(lineArr[4]), float(lineArr[3])])# 保存经纬度 
  datMat = mat(datList)# 数据集 numpy的mat类型 
  # 进行二分K均值算法聚类 
  myCentroids, clustAssing = biKmeans(datMat, numClust, distMeas=distSLC) 
  fig = plt.figure()# 窗口 
  rect=[0.1,0.1,0.8,0.8] 
  scatterMarkers=['s', 'o', '^', '8', 'p', \ 
          'd', 'v', 'h', '>', '<'] 
  axprops = dict(xticks=[], yticks=[]) 
  ax0=fig.add_axes(rect, label='ax0', **axprops)#轴 
  imgP = plt.imread('Portland.png') # 标注在实际的图片上 
  ax0.imshow(imgP) 
  ax1=fig.add_axes(rect, label='ax1', frameon=False) 
  for i in range(numClust):#每一个中心 
    ptsInCurrCluster = datMat[nonzero(clustAssing[:,0].A==i)[0],:]# 属于每个中心的样本点 
    markerStyle = scatterMarkers[i % len(scatterMarkers)]# 点的类型 画图 
    # 散点图 每个中心的样本点 
    ax1.scatter(ptsInCurrCluster[:,0].flatten().A[0], ptsInCurrCluster[:,1].flatten().A[0], marker=markerStyle, s=90) 
  # 散 点图 每个中心 
  ax1.scatter(myCentroids[:,0].flatten().A[0], myCentroids[:,1].flatten().A[0], marker='+', s=300) 
plt.show()# 显示

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python使用tablib生成excel文件的简单实现方法
Mar 16 Python
python常见的格式化输出小结
Dec 15 Python
Python导入模块时遇到的错误分析
Aug 30 Python
Python字典的核心底层原理讲解
Jan 24 Python
python中下标和切片的使用方法解析
Aug 27 Python
python误差棒图errorbar()函数实例解析
Feb 11 Python
python中常见错误及解决方法
Jun 21 Python
python可以用哪些数据库
Jun 22 Python
Python3基于plotly模块保存图片表格
Aug 03 Python
基于Python实现全自动下载抖音视频
Nov 06 Python
Jupyter Notebook 如何修改字体和大小以及更改字体样式
Jun 03 Python
Pandas搭配lambda组合使用详解
Jan 22 Python
Python绘制3d螺旋曲线图实例代码
Dec 20 #Python
python机器学习实战之最近邻kNN分类器
Dec 20 #Python
python3.6 +tkinter GUI编程 实现界面化的文本处理工具(推荐)
Dec 20 #Python
浅谈Python实现Apriori算法介绍
Dec 20 #Python
利用Python如何生成hash值示例详解
Dec 20 #Python
python 3.6 tkinter+urllib+json实现火车车次信息查询功能
Dec 20 #Python
python实现神经网络感知器算法
Dec 20 #Python
You might like
网页游戏开发入门教程三(简单程序应用)
2009/11/02 PHP
PHP date()函数警告: It is not safe to rely on the system解决方法
2014/08/20 PHP
CodeIgniter扩展核心类实例详解
2016/01/20 PHP
YII视图整合kindeditor扩展的方法
2016/07/13 PHP
PHP正则删除HTML代码中宽高样式的方法
2017/06/12 PHP
javascript demo 基本技巧
2009/12/18 Javascript
javascript中用星号表示预录入内容的实现代码
2011/01/08 Javascript
深入领悟JavaScript中的面向对象
2013/11/18 Javascript
引入JS文件IE6报语法错误或缺少对象问题的解决方法
2014/01/09 Javascript
JS实现至少包含字母、大小写数字、字符的密码等级的两种方法
2015/02/03 Javascript
浅析BootStrap模态框的使用(经典)
2016/04/29 Javascript
Node.js连接MongoDB数据库产生的问题
2017/02/08 Javascript
angularjs过滤器--filter与ng-repeat配合有奇效
2017/04/20 Javascript
基于axios封装fetch方法及调用实例
2018/02/05 Javascript
jQuery实现左右滑动的toggle方法
2018/03/03 jQuery
vue-cli脚手架的安装教程图解
2018/09/02 Javascript
Vue-Router的使用方法
2018/09/05 Javascript
Vue-resource安装过程及使用方法解析
2020/07/21 Javascript
Python SQLite3数据库日期与时间常见函数用法分析
2017/08/14 Python
Python读取图片为16进制表示简单代码
2018/01/19 Python
Python 批量刷博客园访问量脚本过程解析
2019/08/30 Python
使用python 将图片复制到系统剪贴中
2019/12/13 Python
python处理RSTP视频流过程解析
2020/01/11 Python
Python无头爬虫下载文件的实现
2020/04/02 Python
python不同版本的_new_不同点总结
2020/12/09 Python
德国体育用品网上商店:SC24.com
2016/08/01 全球购物
台湾森森购物网:U-mall
2017/10/16 全球购物
俄罗斯运动鞋商店:Sneakerhead
2018/05/10 全球购物
高中生学习的自我评价
2013/12/14 职场文书
给老师的检讨书
2014/02/11 职场文书
大学生求职工作的自我评价
2014/02/13 职场文书
团代会闭幕词
2015/01/28 职场文书
高老头读书笔记
2015/06/30 职场文书
大学社团活动总结怎么写
2019/06/21 职场文书
导游词幽默开场白
2019/06/26 职场文书
MySQL中LAG()函数和LEAD()函数的使用
2022/08/14 MySQL