python可视化分析的实现(matplotlib、seaborn、ggplot2)


Posted in Python onFebruary 03, 2021

一、matplotlib库

1、基本绘图命令

import matplotlib.pyplot as plt
plt.figure(figsize=(5,4)) #设置图形大小
plt.rcParams['axes.unicode_minus']=False #正常显示负号
plt.rcParams['font.sans-self']=['Kai Ti'] #设置字体,这里是楷体,SimHei表示黑体

#基本统计图
plt.bar(x,y);plt.pie(y,labels=x);plt.plot(x,y);
plt.hist(df.身高) #若参数density=True则是频率直方图

3、图形参数设置

颜色: plt.plot(x,y,c=‘red') #参数c控制颜色
横纵坐标轴范围: plt.xlim(0,100),plt.ylim(0,8)
横纵坐标轴名称: plt.xlabel(),plt.ylabel()
横纵坐标轴刻度: plt.xticks(range(len(x)),x)
线形和符号: plt.plot(x,y,linestyle='?',marker=‘o') #实线:'-' ;虚线:'?'; '.'指点线
附加参考线: plt.axvline(x=1);plt.axhline(y=4)
文字标注: plt.text(3,5,‘peak point') #参数表示:坐标+文字
图例: plt.plot(x,y,label=‘折线');plt.legend()
分面绘图:

#一行两图
plt.subplot(121)
plt.bar(x,y)
plt.subplot(122)
plt.plot(x,y)
#一页多图
fig,ax=plt.subplots(2,2,figsize=(15,12)) # 2行2列放4个图,figsize控制大小
ax[0,0].bar(x,y);ax[0,1].plot(x,y);
ax[1,0].pie(x,y);ax[1,1].plot(y,'.',linewidth=3)

具体的参数color、linestyle、图例位置设置

颜色字符(color)

字符 代表颜色
r 红色
b 蓝色
g 绿色
w 白色
c 青色
m 洋红
y 黄色
k 黑色

风格字符(linestyle)

字符 代表风格
- (一个连字符) 实线
? (两个连字符) 虚线
-. 点划线
点虚线
' ' 留空,空格

loc 参数(以matplotlib添加图例为例说明位置)

loc string loc code 位置
"best" 0 右上角(默认)
“upper right” 1 右上角
“upper left” 2 左上角
“lower left” 3 左下角
“lower right” 4 右下角
"right" 5 中右侧
“center left” 6 中左侧
“center right” 7 中右侧
“low center” 8 中下方
“upper center” 9 中上方
“center” 10 中间

4、特殊统计图的绘制

4.1 数学函数图

import matplotlib.pyplot as plt   #加载基本绘图包
plt.rcParams['font.sans-serif']=['SimHei']; #SimHei黑体
plt.rcParams['axes.unicode_minus']=False; #正常显示图中负号
import numpy as np #加载软件包numpy
import math  #加载软件包math
x=np.linspace(0,2*math.pi);x #生成[0,2*pi]序列 ,作为横坐标取值
plt.plot(x,np.sin(x)) #y=sinx 正弦函数
plt.plot(x,np.cos(x)) #y=cosx 余弦函数
plt.plot(x,np.log(x)) #y=lnx #对数函数
plt.plot(x,np.exp(x)) #y=e^x 指数函数

数学函数也可以用pandas库绘制,可详见我的另一篇博客:文章链接

#极坐标图
t=np.linspace(0,2*math.pi) 
x=3*np.sin(t); 
y=5*np.cos(t) 
plt.plot(x,y); 
plt.text(0,0,r'$\frac{x^2}{3^2}+\frac{y^2}{5^2}=1$',fontsize=20) #python借鉴的LATEX的格式,可以直接在图中添加公式

python可视化分析的实现(matplotlib、seaborn、ggplot2)

4.2 气泡图

import pandas as pd
df=pd.read_excel('data.xlsx')
plt.scatter(df['身高'], df['体重'], s=df['支出']) #在散点图的基础上加上点的大小,例子中s=df['支出']就是将指各样本点支出越多,点面积就越大

python可视化分析的实现(matplotlib、seaborn、ggplot2)

4.3 三维曲面图

from mpl_toolkits.mplot3d import Axes3D 
fig = plt.figure() 
ax = Axes3D(fig)
X = np.arange(-4, 4, 0.5) 
Y = np.arange(-4, 4, 0.5) 
X, Y = np.meshgrid(X, Y)
Z = (X**2+ Y**2)
ax.plot_surface(X, Y, Z) #该图像就是表示函数z=x^2+y^2

python可视化分析的实现(matplotlib、seaborn、ggplot2)

二、seaborn库

1、常用统计图

1.1 箱线图

import seaborn as sns #加载软件包seaborn
#箱线图
sns.boxplot(x=df['身高'])
#竖着放的箱线图,也就是将 x 换成 y
sns.boxplot(y=df['身高']) 
#分组绘制箱线图
sns.boxplot(x='性别', y='身高',data=df) #将身高按性别分组后绘制

python可视化分析的实现(matplotlib、seaborn、ggplot2)

1.2 小提琴图

sns.violinplot(x='性别', y='支出', data=df) #箱线图的变种,可以加第三个类别参数hue

python可视化分析的实现(matplotlib、seaborn、ggplot2)

1.3 点图

sns.stripplot(x='性别', y='身高', data=df, jitter=True) #分组的数据(定性+定量)画的点图,jitter参数为True表示将点分散开来,默认为false

python可视化分析的实现(matplotlib、seaborn、ggplot2)

1.4 条图与计数图

#条图,即柱形图
sns.barplot(x='性别', y='身高', data=df, ci=0, palette="Blues_d") #palette用于设置颜色
#计数图
sns.countplot(x='性别', hue="开设", data=df) #都是分类变量

python可视化分析的实现(matplotlib、seaborn、ggplot2)

1.5 分组图

#按性别、开设依次分组后计数,aspect指比例大小
sns.factorplot(x='性别', col="开设", col_wrap=3, data=df, kind="count", size=2.5, aspect=.8)

python可视化分析的实现(matplotlib、seaborn、ggplot2)

1.6 概率分布图

#displot:直方图+密度函数,bins表示分的组数,kde=False表示不画出密度曲线,rug表示有数据的地方就标注出来
sns.distplot(df['身高'], kde=True, bins=20, rug=True)

#自定义渐进正态函数图像
def norm_sim2(N=1000,n=10):
 xbar=np.zeros(N)
 for i in range(N):
  xbar[i]=np.random.uniform(0,1,n).mean()#[0,1]上均匀随机数均值
 sns.distplot(xbar,bins=50)
 print(pd.DataFrame(xbar).describe().T)
norm_sim2(N=100000,n=50)

python可视化分析的实现(matplotlib、seaborn、ggplot2)

2、联合图

sns.jointplot(x='身高', y='体重', data=df)#画的散点图+单个变量的直方图

python可视化分析的实现(matplotlib、seaborn、ggplot2)

3、配对图

#针对多个变量,两两配对,画在一起
sns.pairplot(df[['身高','体重','支出']]) #将各变量间关系共放一张图上,在多元统计分析中很有用

python可视化分析的实现(matplotlib、seaborn、ggplot2)

三、ggplot库

ggplot库是采用的绘画中图层的思想,即一层一层往上叠加,先画好坐标,再添线,再增加其他操作,最后用 + 号连接起来,操作起来更有逻辑章法,语句简洁。ggplot新包是plotnine,与R语言的ggplot2对应,使用起来更方便,故直接import plotnine即可,里面的函数使用与ggplot是基本一样的

1、图层画法+常用图形

绘制直角坐标系和字体

GP=ggplot(aes(x='身高',y='体重'),data=df)

python可视化分析的实现(matplotlib、seaborn、ggplot2)

在此基础上增加线图

GP + geom_line()+ theme_grey(base_family = 'SimHei')#还可以再往上叠加,+geom_point()就是在折线图基础上加上散点图

python可视化分析的实现(matplotlib、seaborn、ggplot2)

改为有三个变量的点图,不同类型画不同记号(shape)/颜色(color)

ggplot(df,aes(x='身高',y='体重',color='性别'))+geom_point()+ theme_grey(base_family = 'SimHei')

python可视化分析的实现(matplotlib、seaborn、ggplot2)

改为分面图:
用pandas绘制分组统计图还需要先groupby,ggplot一步到位更加简便

ggplot(df,aes(x='身高',y='体重'))+geom_point()+facet_wrap('性别') + 
theme_grey(base_family = 'SimHei') #facet_wrap('性别')表示按性别分成两组画分面图

python可视化分析的实现(matplotlib、seaborn、ggplot2)

此外,+theme_bw()等可以设置图片背景、主题

2、快速绘图

ggplot也可以像pandas一样,在qplot函数中设置参数geom的取值而直接改变图像类型

#快速绘制直方图
qplot(x='身高',data=df, geom='histogram')+ theme_grey(base_family = 'SimHei')
#快速绘制柱形图
qplot('开设',data=df, geom='bar')+ theme_grey(base_family = 'SimHei')
#默认散点图
qplot('身高', '体重', data=df, color='性别') + theme_grey(base_family = 'SimHei')

以上是基于《python数据分析基础教程 王斌会》整理的学习笔记,还有许多参数设置没有写明,以及pyecharts 动态图神器,日后学习了再一点点补充吧~

到此这篇关于python可视化分析的实现(matplotlib、seaborn、ggplot2)的文章就介绍到这了,更多相关python 可视化内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
Python字符串和文件操作常用函数分析
Apr 08 Python
Windows下实现Python2和Python3两个版共存的方法
Jun 12 Python
python 2.6.6升级到python 2.7.x版本的方法
Oct 09 Python
利用 Monkey 命令操作屏幕快速滑动
Dec 07 Python
Python编程实现粒子群算法(PSO)详解
Nov 13 Python
python爬虫的数据库连接问题【推荐】
Jun 25 Python
Python 类的魔法属性用法实例分析
Nov 21 Python
Python实现桌面翻译工具【新手必学】
Feb 12 Python
Python基于pip实现离线打包过程详解
May 15 Python
matplotlib 生成的图像中无法显示中文字符的解决方法
Jun 10 Python
用python实现名片管理系统
Jun 18 Python
Python pygame实现中国象棋单机版源码
Jun 20 Python
matplotlib交互式数据光标mpldatacursor的实现
Feb 03 #Python
matplotlib更改窗口图标的方法示例
Feb 03 #Python
python中添加模块导入路径的方法
Feb 03 #Python
浅谈matplotlib默认字体设置探索
Feb 03 #Python
python sleep和wait对比总结
Feb 03 #Python
Python实现简单猜数字游戏
Feb 03 #Python
python 实现图片裁剪小工具
Feb 02 #Python
You might like
openflashchart 2.0 简单案例php版
2012/05/21 PHP
php 获取页面中指定内容的实现类
2014/01/23 PHP
PHP读取大文件的多种方法介绍
2016/04/04 PHP
php和redis实现秒杀活动的流程
2019/07/17 PHP
Javascript技巧之不要用for in语句对数组进行遍历
2010/10/20 Javascript
如何用ajax来创建一个XMLHttpRequest对象
2012/12/10 Javascript
js动态创建上传表单通过iframe模拟Ajax实现无刷新
2014/02/20 Javascript
js+css实现导航效果实例
2015/02/10 Javascript
jQuery.extend 函数及用法详细
2015/09/06 Javascript
javascript中call apply 与 bind方法详解
2016/03/10 Javascript
基于javascript实现tab切换特效
2016/03/29 Javascript
基于HTML5上使用iScroll实现下拉刷新,上拉加载更多
2016/05/21 Javascript
AngularJS过滤器详解及示例代码
2016/08/16 Javascript
浅谈angularjs module返回对象的坑(推荐)
2016/10/21 Javascript
javascript基本数据类型和转换
2017/03/17 Javascript
nodejs创建简易web服务器与文件读写的实例
2017/09/07 NodeJs
vue获取DOM元素并设置属性的两种实现方法
2017/09/30 Javascript
微信小程序使用for循环动态渲染页面操作示例
2018/12/25 Javascript
如何使用Node.js爬取任意网页资源并输出PDF文件到本地
2019/06/17 Javascript
Python的Django框架使用入门指引
2015/04/15 Python
《Python学习手册》学习总结
2018/01/17 Python
spark: RDD与DataFrame之间的相互转换方法
2018/06/07 Python
python logging重复记录日志问题的解决方法
2018/07/12 Python
python实现二维数组的对角线遍历
2019/03/02 Python
python提取log文件内容并画出图表
2019/07/08 Python
基于Python新建用户并产生随机密码过程解析
2019/10/08 Python
大专毕业生自我评价分享
2013/11/10 职场文书
集体婚礼证婚词
2014/01/13 职场文书
暑期培训随笔感言
2014/03/10 职场文书
创建学习型党组织实施方案
2014/03/29 职场文书
社会发展项目建议书
2014/08/25 职场文书
学习型党组织心得体会
2014/09/12 职场文书
公安局副政委班子个人对照检查材料
2014/10/04 职场文书
公司2015年终工作总结
2015/05/26 职场文书
解决hive中导入text文件遇到的坑
2021/04/07 Python
Angular性能优化之第三方组件和懒加载技术
2021/05/10 Javascript