python可视化分析的实现(matplotlib、seaborn、ggplot2)


Posted in Python onFebruary 03, 2021

一、matplotlib库

1、基本绘图命令

import matplotlib.pyplot as plt
plt.figure(figsize=(5,4)) #设置图形大小
plt.rcParams['axes.unicode_minus']=False #正常显示负号
plt.rcParams['font.sans-self']=['Kai Ti'] #设置字体,这里是楷体,SimHei表示黑体

#基本统计图
plt.bar(x,y);plt.pie(y,labels=x);plt.plot(x,y);
plt.hist(df.身高) #若参数density=True则是频率直方图

3、图形参数设置

颜色: plt.plot(x,y,c=‘red') #参数c控制颜色
横纵坐标轴范围: plt.xlim(0,100),plt.ylim(0,8)
横纵坐标轴名称: plt.xlabel(),plt.ylabel()
横纵坐标轴刻度: plt.xticks(range(len(x)),x)
线形和符号: plt.plot(x,y,linestyle='?',marker=‘o') #实线:'-' ;虚线:'?'; '.'指点线
附加参考线: plt.axvline(x=1);plt.axhline(y=4)
文字标注: plt.text(3,5,‘peak point') #参数表示:坐标+文字
图例: plt.plot(x,y,label=‘折线');plt.legend()
分面绘图:

#一行两图
plt.subplot(121)
plt.bar(x,y)
plt.subplot(122)
plt.plot(x,y)
#一页多图
fig,ax=plt.subplots(2,2,figsize=(15,12)) # 2行2列放4个图,figsize控制大小
ax[0,0].bar(x,y);ax[0,1].plot(x,y);
ax[1,0].pie(x,y);ax[1,1].plot(y,'.',linewidth=3)

具体的参数color、linestyle、图例位置设置

颜色字符(color)

字符 代表颜色
r 红色
b 蓝色
g 绿色
w 白色
c 青色
m 洋红
y 黄色
k 黑色

风格字符(linestyle)

字符 代表风格
- (一个连字符) 实线
? (两个连字符) 虚线
-. 点划线
点虚线
' ' 留空,空格

loc 参数(以matplotlib添加图例为例说明位置)

loc string loc code 位置
"best" 0 右上角(默认)
“upper right” 1 右上角
“upper left” 2 左上角
“lower left” 3 左下角
“lower right” 4 右下角
"right" 5 中右侧
“center left” 6 中左侧
“center right” 7 中右侧
“low center” 8 中下方
“upper center” 9 中上方
“center” 10 中间

4、特殊统计图的绘制

4.1 数学函数图

import matplotlib.pyplot as plt   #加载基本绘图包
plt.rcParams['font.sans-serif']=['SimHei']; #SimHei黑体
plt.rcParams['axes.unicode_minus']=False; #正常显示图中负号
import numpy as np #加载软件包numpy
import math  #加载软件包math
x=np.linspace(0,2*math.pi);x #生成[0,2*pi]序列 ,作为横坐标取值
plt.plot(x,np.sin(x)) #y=sinx 正弦函数
plt.plot(x,np.cos(x)) #y=cosx 余弦函数
plt.plot(x,np.log(x)) #y=lnx #对数函数
plt.plot(x,np.exp(x)) #y=e^x 指数函数

数学函数也可以用pandas库绘制,可详见我的另一篇博客:文章链接

#极坐标图
t=np.linspace(0,2*math.pi) 
x=3*np.sin(t); 
y=5*np.cos(t) 
plt.plot(x,y); 
plt.text(0,0,r'$\frac{x^2}{3^2}+\frac{y^2}{5^2}=1$',fontsize=20) #python借鉴的LATEX的格式,可以直接在图中添加公式

python可视化分析的实现(matplotlib、seaborn、ggplot2)

4.2 气泡图

import pandas as pd
df=pd.read_excel('data.xlsx')
plt.scatter(df['身高'], df['体重'], s=df['支出']) #在散点图的基础上加上点的大小,例子中s=df['支出']就是将指各样本点支出越多,点面积就越大

python可视化分析的实现(matplotlib、seaborn、ggplot2)

4.3 三维曲面图

from mpl_toolkits.mplot3d import Axes3D 
fig = plt.figure() 
ax = Axes3D(fig)
X = np.arange(-4, 4, 0.5) 
Y = np.arange(-4, 4, 0.5) 
X, Y = np.meshgrid(X, Y)
Z = (X**2+ Y**2)
ax.plot_surface(X, Y, Z) #该图像就是表示函数z=x^2+y^2

python可视化分析的实现(matplotlib、seaborn、ggplot2)

二、seaborn库

1、常用统计图

1.1 箱线图

import seaborn as sns #加载软件包seaborn
#箱线图
sns.boxplot(x=df['身高'])
#竖着放的箱线图,也就是将 x 换成 y
sns.boxplot(y=df['身高']) 
#分组绘制箱线图
sns.boxplot(x='性别', y='身高',data=df) #将身高按性别分组后绘制

python可视化分析的实现(matplotlib、seaborn、ggplot2)

1.2 小提琴图

sns.violinplot(x='性别', y='支出', data=df) #箱线图的变种,可以加第三个类别参数hue

python可视化分析的实现(matplotlib、seaborn、ggplot2)

1.3 点图

sns.stripplot(x='性别', y='身高', data=df, jitter=True) #分组的数据(定性+定量)画的点图,jitter参数为True表示将点分散开来,默认为false

python可视化分析的实现(matplotlib、seaborn、ggplot2)

1.4 条图与计数图

#条图,即柱形图
sns.barplot(x='性别', y='身高', data=df, ci=0, palette="Blues_d") #palette用于设置颜色
#计数图
sns.countplot(x='性别', hue="开设", data=df) #都是分类变量

python可视化分析的实现(matplotlib、seaborn、ggplot2)

1.5 分组图

#按性别、开设依次分组后计数,aspect指比例大小
sns.factorplot(x='性别', col="开设", col_wrap=3, data=df, kind="count", size=2.5, aspect=.8)

python可视化分析的实现(matplotlib、seaborn、ggplot2)

1.6 概率分布图

#displot:直方图+密度函数,bins表示分的组数,kde=False表示不画出密度曲线,rug表示有数据的地方就标注出来
sns.distplot(df['身高'], kde=True, bins=20, rug=True)

#自定义渐进正态函数图像
def norm_sim2(N=1000,n=10):
 xbar=np.zeros(N)
 for i in range(N):
  xbar[i]=np.random.uniform(0,1,n).mean()#[0,1]上均匀随机数均值
 sns.distplot(xbar,bins=50)
 print(pd.DataFrame(xbar).describe().T)
norm_sim2(N=100000,n=50)

python可视化分析的实现(matplotlib、seaborn、ggplot2)

2、联合图

sns.jointplot(x='身高', y='体重', data=df)#画的散点图+单个变量的直方图

python可视化分析的实现(matplotlib、seaborn、ggplot2)

3、配对图

#针对多个变量,两两配对,画在一起
sns.pairplot(df[['身高','体重','支出']]) #将各变量间关系共放一张图上,在多元统计分析中很有用

python可视化分析的实现(matplotlib、seaborn、ggplot2)

三、ggplot库

ggplot库是采用的绘画中图层的思想,即一层一层往上叠加,先画好坐标,再添线,再增加其他操作,最后用 + 号连接起来,操作起来更有逻辑章法,语句简洁。ggplot新包是plotnine,与R语言的ggplot2对应,使用起来更方便,故直接import plotnine即可,里面的函数使用与ggplot是基本一样的

1、图层画法+常用图形

绘制直角坐标系和字体

GP=ggplot(aes(x='身高',y='体重'),data=df)

python可视化分析的实现(matplotlib、seaborn、ggplot2)

在此基础上增加线图

GP + geom_line()+ theme_grey(base_family = 'SimHei')#还可以再往上叠加,+geom_point()就是在折线图基础上加上散点图

python可视化分析的实现(matplotlib、seaborn、ggplot2)

改为有三个变量的点图,不同类型画不同记号(shape)/颜色(color)

ggplot(df,aes(x='身高',y='体重',color='性别'))+geom_point()+ theme_grey(base_family = 'SimHei')

python可视化分析的实现(matplotlib、seaborn、ggplot2)

改为分面图:
用pandas绘制分组统计图还需要先groupby,ggplot一步到位更加简便

ggplot(df,aes(x='身高',y='体重'))+geom_point()+facet_wrap('性别') + 
theme_grey(base_family = 'SimHei') #facet_wrap('性别')表示按性别分成两组画分面图

python可视化分析的实现(matplotlib、seaborn、ggplot2)

此外,+theme_bw()等可以设置图片背景、主题

2、快速绘图

ggplot也可以像pandas一样,在qplot函数中设置参数geom的取值而直接改变图像类型

#快速绘制直方图
qplot(x='身高',data=df, geom='histogram')+ theme_grey(base_family = 'SimHei')
#快速绘制柱形图
qplot('开设',data=df, geom='bar')+ theme_grey(base_family = 'SimHei')
#默认散点图
qplot('身高', '体重', data=df, color='性别') + theme_grey(base_family = 'SimHei')

以上是基于《python数据分析基础教程 王斌会》整理的学习笔记,还有许多参数设置没有写明,以及pyecharts 动态图神器,日后学习了再一点点补充吧~

到此这篇关于python可视化分析的实现(matplotlib、seaborn、ggplot2)的文章就介绍到这了,更多相关python 可视化内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
python实现电子词典
Apr 23 Python
Python线程指南详细介绍
Jan 05 Python
Python升级导致yum、pip报错的解决方法
Sep 06 Python
python编程通过蒙特卡洛法计算定积分详解
Dec 13 Python
Python 中的 global 标识对变量作用域的影响
Aug 12 Python
详解python uiautomator2 watcher的使用方法
Sep 09 Python
Django REST framework 单元测试实例解析
Nov 07 Python
基于python cut和qcut的用法及区别详解
Nov 22 Python
树莓派升级python的具体步骤
Jul 05 Python
python 服务器运行代码报错ModuleNotFoundError的解决办法
Sep 16 Python
python报错TypeError: ‘NoneType‘ object is not subscriptable的解决方法
Nov 05 Python
用Python自动清理系统垃圾的实现
Jan 18 Python
matplotlib交互式数据光标mpldatacursor的实现
Feb 03 #Python
matplotlib更改窗口图标的方法示例
Feb 03 #Python
python中添加模块导入路径的方法
Feb 03 #Python
浅谈matplotlib默认字体设置探索
Feb 03 #Python
python sleep和wait对比总结
Feb 03 #Python
Python实现简单猜数字游戏
Feb 03 #Python
python 实现图片裁剪小工具
Feb 02 #Python
You might like
解析php dirname()与__FILE__常量的应用
2013/06/24 PHP
php文字水印和php图片水印实现代码(二种加水印方法)
2013/12/25 PHP
php实现快速排序的三种方法分享
2014/03/12 PHP
PHP+HTML+JavaScript+Css实现简单爬虫开发
2016/03/28 PHP
浅析PHP数据导出知识点
2018/02/17 PHP
js操作select控件的几种方法
2010/06/02 Javascript
模拟用户点击弹出新页面不会被浏览器拦截
2014/04/08 Javascript
全屏js头像上传插件源码高清版
2016/03/29 Javascript
关于JavaScript数组你所不知道的3件事
2016/08/24 Javascript
JavaScript实现替换字符串中最后一个字符的方法
2017/03/07 Javascript
vue+vuex+axio从后台获取数据存入vuex实现组件之间共享数据
2017/04/22 Javascript
令按钮悬浮在(手机)页面底部的实现方法
2017/05/02 Javascript
微信小程序之页面拦截器的示例代码
2017/09/07 Javascript
微信小程序实现页面分享onShareAppMessage
2019/08/12 Javascript
深入了解JavaScript 防抖和节流
2019/09/12 Javascript
vue实现短信验证码登录功能(流程详解)
2019/12/10 Javascript
[04:28]2014DOTA2国际邀请赛 采访小兔子LGD挺进钥匙体育馆
2014/07/14 DOTA
Python多线程编程(四):使用Lock互斥锁
2015/04/05 Python
浅谈python配置与使用OpenCV踩的一些坑
2018/04/02 Python
python 遍历列表提取下标和值的实例
2018/12/25 Python
pandas进行时间数据的转换和计算时间差并提取年月日
2019/07/06 Python
Django中使用CORS实现跨域请求过程解析
2019/08/05 Python
节日快乐! Python画一棵圣诞树送给你
2019/12/24 Python
PyTorch实现AlexNet示例
2020/01/14 Python
关于pytorch中全连接神经网络搭建两种模式详解
2020/01/14 Python
python map比for循环快在哪
2020/09/21 Python
纯css3实现走马灯效果
2014/12/26 HTML / CSS
HTML5无刷新改变当前url的代码
2017/03/15 HTML / CSS
linux系统都有哪些运行级别
2012/04/15 面试题
超市创意活动方案
2014/08/15 职场文书
高中国旗下的演讲稿
2014/08/28 职场文书
全国法制宣传日活动总结
2015/05/05 职场文书
业务员年终工作总结2015
2015/05/28 职场文书
JavaScript如何利用Promise控制并发请求个数
2021/05/14 Javascript
浅谈怎么给Python添加类型标注
2021/06/08 Python
Docker 镜像介绍以及commit相关操作
2022/04/13 Servers