python可视化分析的实现(matplotlib、seaborn、ggplot2)


Posted in Python onFebruary 03, 2021

一、matplotlib库

1、基本绘图命令

import matplotlib.pyplot as plt
plt.figure(figsize=(5,4)) #设置图形大小
plt.rcParams['axes.unicode_minus']=False #正常显示负号
plt.rcParams['font.sans-self']=['Kai Ti'] #设置字体,这里是楷体,SimHei表示黑体

#基本统计图
plt.bar(x,y);plt.pie(y,labels=x);plt.plot(x,y);
plt.hist(df.身高) #若参数density=True则是频率直方图

3、图形参数设置

颜色: plt.plot(x,y,c=‘red') #参数c控制颜色
横纵坐标轴范围: plt.xlim(0,100),plt.ylim(0,8)
横纵坐标轴名称: plt.xlabel(),plt.ylabel()
横纵坐标轴刻度: plt.xticks(range(len(x)),x)
线形和符号: plt.plot(x,y,linestyle='?',marker=‘o') #实线:'-' ;虚线:'?'; '.'指点线
附加参考线: plt.axvline(x=1);plt.axhline(y=4)
文字标注: plt.text(3,5,‘peak point') #参数表示:坐标+文字
图例: plt.plot(x,y,label=‘折线');plt.legend()
分面绘图:

#一行两图
plt.subplot(121)
plt.bar(x,y)
plt.subplot(122)
plt.plot(x,y)
#一页多图
fig,ax=plt.subplots(2,2,figsize=(15,12)) # 2行2列放4个图,figsize控制大小
ax[0,0].bar(x,y);ax[0,1].plot(x,y);
ax[1,0].pie(x,y);ax[1,1].plot(y,'.',linewidth=3)

具体的参数color、linestyle、图例位置设置

颜色字符(color)

字符 代表颜色
r 红色
b 蓝色
g 绿色
w 白色
c 青色
m 洋红
y 黄色
k 黑色

风格字符(linestyle)

字符 代表风格
- (一个连字符) 实线
? (两个连字符) 虚线
-. 点划线
点虚线
' ' 留空,空格

loc 参数(以matplotlib添加图例为例说明位置)

loc string loc code 位置
"best" 0 右上角(默认)
“upper right” 1 右上角
“upper left” 2 左上角
“lower left” 3 左下角
“lower right” 4 右下角
"right" 5 中右侧
“center left” 6 中左侧
“center right” 7 中右侧
“low center” 8 中下方
“upper center” 9 中上方
“center” 10 中间

4、特殊统计图的绘制

4.1 数学函数图

import matplotlib.pyplot as plt   #加载基本绘图包
plt.rcParams['font.sans-serif']=['SimHei']; #SimHei黑体
plt.rcParams['axes.unicode_minus']=False; #正常显示图中负号
import numpy as np #加载软件包numpy
import math  #加载软件包math
x=np.linspace(0,2*math.pi);x #生成[0,2*pi]序列 ,作为横坐标取值
plt.plot(x,np.sin(x)) #y=sinx 正弦函数
plt.plot(x,np.cos(x)) #y=cosx 余弦函数
plt.plot(x,np.log(x)) #y=lnx #对数函数
plt.plot(x,np.exp(x)) #y=e^x 指数函数

数学函数也可以用pandas库绘制,可详见我的另一篇博客:文章链接

#极坐标图
t=np.linspace(0,2*math.pi) 
x=3*np.sin(t); 
y=5*np.cos(t) 
plt.plot(x,y); 
plt.text(0,0,r'$\frac{x^2}{3^2}+\frac{y^2}{5^2}=1$',fontsize=20) #python借鉴的LATEX的格式,可以直接在图中添加公式

python可视化分析的实现(matplotlib、seaborn、ggplot2)

4.2 气泡图

import pandas as pd
df=pd.read_excel('data.xlsx')
plt.scatter(df['身高'], df['体重'], s=df['支出']) #在散点图的基础上加上点的大小,例子中s=df['支出']就是将指各样本点支出越多,点面积就越大

python可视化分析的实现(matplotlib、seaborn、ggplot2)

4.3 三维曲面图

from mpl_toolkits.mplot3d import Axes3D 
fig = plt.figure() 
ax = Axes3D(fig)
X = np.arange(-4, 4, 0.5) 
Y = np.arange(-4, 4, 0.5) 
X, Y = np.meshgrid(X, Y)
Z = (X**2+ Y**2)
ax.plot_surface(X, Y, Z) #该图像就是表示函数z=x^2+y^2

python可视化分析的实现(matplotlib、seaborn、ggplot2)

二、seaborn库

1、常用统计图

1.1 箱线图

import seaborn as sns #加载软件包seaborn
#箱线图
sns.boxplot(x=df['身高'])
#竖着放的箱线图,也就是将 x 换成 y
sns.boxplot(y=df['身高']) 
#分组绘制箱线图
sns.boxplot(x='性别', y='身高',data=df) #将身高按性别分组后绘制

python可视化分析的实现(matplotlib、seaborn、ggplot2)

1.2 小提琴图

sns.violinplot(x='性别', y='支出', data=df) #箱线图的变种,可以加第三个类别参数hue

python可视化分析的实现(matplotlib、seaborn、ggplot2)

1.3 点图

sns.stripplot(x='性别', y='身高', data=df, jitter=True) #分组的数据(定性+定量)画的点图,jitter参数为True表示将点分散开来,默认为false

python可视化分析的实现(matplotlib、seaborn、ggplot2)

1.4 条图与计数图

#条图,即柱形图
sns.barplot(x='性别', y='身高', data=df, ci=0, palette="Blues_d") #palette用于设置颜色
#计数图
sns.countplot(x='性别', hue="开设", data=df) #都是分类变量

python可视化分析的实现(matplotlib、seaborn、ggplot2)

1.5 分组图

#按性别、开设依次分组后计数,aspect指比例大小
sns.factorplot(x='性别', col="开设", col_wrap=3, data=df, kind="count", size=2.5, aspect=.8)

python可视化分析的实现(matplotlib、seaborn、ggplot2)

1.6 概率分布图

#displot:直方图+密度函数,bins表示分的组数,kde=False表示不画出密度曲线,rug表示有数据的地方就标注出来
sns.distplot(df['身高'], kde=True, bins=20, rug=True)

#自定义渐进正态函数图像
def norm_sim2(N=1000,n=10):
 xbar=np.zeros(N)
 for i in range(N):
  xbar[i]=np.random.uniform(0,1,n).mean()#[0,1]上均匀随机数均值
 sns.distplot(xbar,bins=50)
 print(pd.DataFrame(xbar).describe().T)
norm_sim2(N=100000,n=50)

python可视化分析的实现(matplotlib、seaborn、ggplot2)

2、联合图

sns.jointplot(x='身高', y='体重', data=df)#画的散点图+单个变量的直方图

python可视化分析的实现(matplotlib、seaborn、ggplot2)

3、配对图

#针对多个变量,两两配对,画在一起
sns.pairplot(df[['身高','体重','支出']]) #将各变量间关系共放一张图上,在多元统计分析中很有用

python可视化分析的实现(matplotlib、seaborn、ggplot2)

三、ggplot库

ggplot库是采用的绘画中图层的思想,即一层一层往上叠加,先画好坐标,再添线,再增加其他操作,最后用 + 号连接起来,操作起来更有逻辑章法,语句简洁。ggplot新包是plotnine,与R语言的ggplot2对应,使用起来更方便,故直接import plotnine即可,里面的函数使用与ggplot是基本一样的

1、图层画法+常用图形

绘制直角坐标系和字体

GP=ggplot(aes(x='身高',y='体重'),data=df)

python可视化分析的实现(matplotlib、seaborn、ggplot2)

在此基础上增加线图

GP + geom_line()+ theme_grey(base_family = 'SimHei')#还可以再往上叠加,+geom_point()就是在折线图基础上加上散点图

python可视化分析的实现(matplotlib、seaborn、ggplot2)

改为有三个变量的点图,不同类型画不同记号(shape)/颜色(color)

ggplot(df,aes(x='身高',y='体重',color='性别'))+geom_point()+ theme_grey(base_family = 'SimHei')

python可视化分析的实现(matplotlib、seaborn、ggplot2)

改为分面图:
用pandas绘制分组统计图还需要先groupby,ggplot一步到位更加简便

ggplot(df,aes(x='身高',y='体重'))+geom_point()+facet_wrap('性别') + 
theme_grey(base_family = 'SimHei') #facet_wrap('性别')表示按性别分成两组画分面图

python可视化分析的实现(matplotlib、seaborn、ggplot2)

此外,+theme_bw()等可以设置图片背景、主题

2、快速绘图

ggplot也可以像pandas一样,在qplot函数中设置参数geom的取值而直接改变图像类型

#快速绘制直方图
qplot(x='身高',data=df, geom='histogram')+ theme_grey(base_family = 'SimHei')
#快速绘制柱形图
qplot('开设',data=df, geom='bar')+ theme_grey(base_family = 'SimHei')
#默认散点图
qplot('身高', '体重', data=df, color='性别') + theme_grey(base_family = 'SimHei')

以上是基于《python数据分析基础教程 王斌会》整理的学习笔记,还有许多参数设置没有写明,以及pyecharts 动态图神器,日后学习了再一点点补充吧~

到此这篇关于python可视化分析的实现(matplotlib、seaborn、ggplot2)的文章就介绍到这了,更多相关python 可视化内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
haskell实现多线程服务器实例代码
Nov 26 Python
Python挑选文件夹里宽大于300图片的方法
Mar 05 Python
Python运算符重载用法实例分析
Jun 01 Python
详解python中的json的基本使用方法
Dec 21 Python
Python基于time模块求程序运行时间的方法
Sep 18 Python
Python3解决棋盘覆盖问题的方法示例
Dec 07 Python
《Python学习手册》学习总结
Jan 17 Python
Python线性拟合实现函数与用法示例
Dec 13 Python
python使用Plotly绘图工具绘制柱状图
Apr 01 Python
浅谈Pytorch中的自动求导函数backward()所需参数的含义
Feb 29 Python
完美解决pycharm 不显示代码提示问题
Jun 02 Python
Python如何在单元测试中给对象打补丁
Aug 03 Python
matplotlib交互式数据光标mpldatacursor的实现
Feb 03 #Python
matplotlib更改窗口图标的方法示例
Feb 03 #Python
python中添加模块导入路径的方法
Feb 03 #Python
浅谈matplotlib默认字体设置探索
Feb 03 #Python
python sleep和wait对比总结
Feb 03 #Python
Python实现简单猜数字游戏
Feb 03 #Python
python 实现图片裁剪小工具
Feb 02 #Python
You might like
PHP中文分词 自动获取关键词介绍
2012/11/13 PHP
CodeIgniter采用config控制的多语言实现根据浏览器语言自动转换功能
2014/07/18 PHP
php获取随机数组列表的方法
2014/11/13 PHP
php分割合并两个字符串的函数实例
2015/06/19 PHP
js一组验证函数
2008/12/20 Javascript
JavaScript 创建对象和构造类实现代码
2009/07/30 Javascript
Jquery实现无刷新DropDownList联动实现代码
2010/03/08 Javascript
javascript实现tabs选项卡切换效果(自写原生js)
2013/03/19 Javascript
检测一个函数是否是JavaScript原生函数的小技巧
2015/03/13 Javascript
js的各种排序算法实现(总结)
2016/07/23 Javascript
jQuery.datatables.js插件用法及api实例详解
2016/10/28 Javascript
async/await与promise(nodejs中的异步操作问题)
2017/03/03 NodeJs
react native带索引的城市列表组件的实例代码
2017/08/08 Javascript
vue项目中使用Hbuilder打包app 设置沉浸式状态栏的方法
2018/10/22 Javascript
python中os模块详解
2016/10/14 Python
Python批量查询域名是否被注册过
2017/06/21 Python
Python字符串拼接六种方法介绍
2017/12/18 Python
Python三种遍历文件目录的方法实例代码
2018/01/19 Python
python之从文件读取数据到list的实例讲解
2018/04/19 Python
Python利用openpyxl库遍历Sheet的实例
2018/05/03 Python
python遍历小写英文字母的方法
2019/01/02 Python
Python使用sax模块解析XML文件示例
2019/04/04 Python
python七夕浪漫表白源码
2019/04/05 Python
python实现websocket的客户端压力测试
2019/06/25 Python
python多线程使用方法实例详解
2019/12/30 Python
解决keras,val_categorical_accuracy:,0.0000e+00问题
2020/07/02 Python
详解如何使用CSS3中的结构伪类选择器和伪元素选择器
2020/01/06 HTML / CSS
舒适的豪华鞋:Taryn Rose
2018/05/03 全球购物
Nayomi官网:沙特阿拉伯王国睡衣和内衣品牌
2020/12/19 全球购物
亿阳信通股份有限公司C#笔试题
2016/12/06 面试题
大学生冰淇淋店商业计划书
2014/01/14 职场文书
十佳中学生事迹材料
2014/06/02 职场文书
医务人员医德考评自我评价
2015/03/03 职场文书
2015年度团总支工作总结
2015/04/23 职场文书
2015年乡镇民政工作总结
2015/05/13 职场文书
python使用openpyxl库读写Excel表格的方法(增删改查操作)
2021/05/02 Python