如何通过Python实现RabbitMQ延迟队列


Posted in Python onNovember 28, 2020

最近在做一任务时,遇到需要延迟处理的数据,最开始的做法是现将数据存储在数据库,然后写个脚本,隔五分钟扫描数据表再处理数据,实际效果并不好。因为系统本身一直在用RabbitMQ做异步处理任务的中间件,所以想到是否可以利用RabbitMQ实现延迟队列。功夫不负有心人,RabbitMQ虽然没有现成可用的延迟队列,但是可以利用其两个重要特性来实现之:1、Time To Live(TTL)消息超时机制;2、Dead Letter Exchanges(DLX)死信队列。下面将具体描述实现原理以及实现代

延迟队列的基础原理Time To Live(TTL)

RabbitMQ可以针对Queue设置x-expires 或者 针对Message设置 x-message-ttl,来控制消息的生存时间,如果超时(两者同时设置以最先到期的时间为准),则消息变为dead letter(死信)
RabbitMQ消息的过期时间有两种方法设置。

通过队列(Queue)的属性设置,队列中所有的消息都有相同的过期时间。(本次延迟队列采用的方案)对消息单独设置,每条消息TTL可以不同。

如果同时使用,则消息的过期时间以两者之间TTL较小的那个数值为准。消息在队列的生存时间一旦超过设置的TTL值,就成为死信(dead letter)

Dead Letter Exchanges(DLX)

RabbitMQ的Queue可以配置x-dead-letter-exchange 和x-dead-letter-routing-key(可选)两个参数,如果队列内出现了dead letter,则按照这两个参数重新路由转发到指定的队列。

  • x-dead-letter-exchange:出现死信(dead letter)之后将dead letter重新发送到指定exchange
  • x-dead-letter-routing-key:出现死信(dead letter)之后将dead letter重新按照指定的routing-key发送

队列中出现死信(dead letter)的情况有:

  • 消息或者队列的TTL过期。(延迟队列利用的特性)
  • 队列达到最大长度
  • 消息被消费端拒绝(basic.reject or basic.nack)并且requeue=false

综合上面两个特性,将队列设置TTL规则,队列TTL过期后消息会变成死信,然后利用DLX特性将其转发到另外的交换机和队列就可以被重新消费,达到延迟消费效果。

如何通过Python实现RabbitMQ延迟队列

延迟队列设计及实现(Python)

从上面描述,延迟队列的实现大致分为两步:

产生死信,有两种方式Per-Message TTL和 Queue TTL,因为我的需求中是所有的消息延迟处理时间相同,所以本实现中采用 Queue TTL设置队列的TTL,如果需要将队列中的消息设置不同的延迟处理时间,则设置Per-Message TTL(官方文档)

设置死信的转发规则,Dead Letter Exchanges设置方法(官方文档)

完整代码如下:

"""
Created on Fri Aug 3 17:00:44 2018

@author: Bge
"""
import pika,json,logging
class RabbitMQClient:
  def __init__(self, conn_str='amqp://user:pwd@host:port/%2F'):
    self.exchange_type = "direct"
    self.connection_string = conn_str
    self.connection = pika.BlockingConnection(pika.URLParameters(self.connection_string))
    self.channel = self.connection.channel()
    self._declare_retry_queue() #RetryQueue and RetryExchange
    logging.debug("connection established")
  def close_connection(self):
    self.connection.close()
    logging.debug("connection closed")
  def declare_exchange(self, exchange):
    self.channel.exchange_declare(exchange=exchange,
                   exchange_type=self.exchange_type,
                   durable=True)
  def declare_queue(self, queue):
    self.channel.queue_declare(queue=queue,
                  durable=True,)
  def declare_delay_queue(self, queue,DLX='RetryExchange',TTL=60000):
    """
    创建延迟队列
    :param TTL: ttl的单位是us,ttl=60000 表示 60s
    :param queue:
    :param DLX:死信转发的exchange
    :return:
    """
    arguments={}
    if DLX:
      #设置死信转发的exchange
      arguments[ 'x-dead-letter-exchange']=DLX
    if TTL:
      arguments['x-message-ttl']=TTL
    print(arguments)
    self.channel.queue_declare(queue=queue,
                  durable=True,
                  arguments=arguments)
  def _declare_retry_queue(self):
    """
    创建异常交换器和队列,用于存放没有正常处理的消息。
    :return:
    """
    self.channel.exchange_declare(exchange='RetryExchange',
                   exchange_type='fanout',
                   durable=True)
    self.channel.queue_declare(queue='RetryQueue',
                  durable=True)
    self.channel.queue_bind('RetryQueue', 'RetryExchange','RetryQueue')
  def publish_message(self,routing_key, msg,exchange='',delay=0,TTL=None):
    """
    发送消息到指定的交换器
    :param exchange: RabbitMQ交换器
    :param msg: 消息实体,是一个序列化的JSON字符串
    :return:
    """
    if delay==0:
      self.declare_queue(routing_key)
    else:
      self.declare_delay_queue(routing_key,TTL=TTL)
    if exchange!='':
      self.declare_exchange(exchange)
    self.channel.basic_publish(exchange=exchange,
                  routing_key=routing_key,
                  body=msg,
                  properties=pika.BasicProperties(
                    delivery_mode=2,
                    type=exchange
                  ))
    self.close_connection()
    print("message send out to %s" % exchange)
    logging.debug("message send out to %s" % exchange)
  def start_consume(self,callback,queue='#',delay=1):
    """
    启动消费者,开始消费RabbitMQ中的消息
    :return:
    """
    if delay==1:
      queue='RetryQueue'
    else:
      self.declare_queue(queue)
    self.channel.basic_qos(prefetch_count=1)
    try:
      self.channel.basic_consume( # 消费消息
        callback, # 如果收到消息,就调用callback函数来处理消息
        queue=queue, # 你要从那个队列里收消息
      )
      self.channel.start_consuming()
    except KeyboardInterrupt:
      self.stop_consuming()
  def stop_consuming(self):
    self.channel.stop_consuming()
    self.close_connection()
  def message_handle_successfully(channel, method):
    """
    如果消息处理正常完成,必须调用此方法,
    否则RabbitMQ会认为消息处理不成功,重新将消息放回待执行队列中
    :param channel: 回调函数的channel参数
    :param method: 回调函数的method参数
    :return:
    """
    channel.basic_ack(delivery_tag=method.delivery_tag)
  def message_handle_failed(channel, method):
    """
    如果消息处理失败,应该调用此方法,会自动将消息放入异常队列
    :param channel: 回调函数的channel参数
    :param method: 回调函数的method参数
    :return:
    """
    channel.basic_reject(delivery_tag=method.delivery_tag, requeue=False)

发布消息代码如下:

from MQ.RabbitMQ import RabbitMQClient
print("start program")
client = RabbitMQClient()
msg1 = '{"key":"value"}'
client.publish_message('test-delay',msg1,delay=1,TTL=10000)
print("message send out")

消费者代码如下:

from MQ.RabbitMQ import RabbitMQClient
import json
print("start program")
client = RabbitMQClient()
def callback(ch, method, properties, body):
    msg = body.decode()
    print(msg)
    # 如果处理成功,则调用此消息回复ack,表示消息成功处理完成。
    RabbitMQClient.message_handle_successfully(ch, method)
queue_name = "RetryQueue"
client.start_consume(callback,queue_name,delay=0)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
归纳整理Python中的控制流语句的知识点
Apr 14 Python
Python数据操作方法封装类实例
Jun 23 Python
有关Python的22个编程技巧
Aug 29 Python
Python单向链表和双向链表原理与用法实例详解
Aug 31 Python
python执行CMD指令,并获取返回的方法
Dec 19 Python
使用Django2快速开发Web项目的详细步骤
Jan 06 Python
解决使用PyCharm时无法启动控制台的问题
Jan 19 Python
python实现转盘效果 python实现轮盘抽奖游戏
Jan 22 Python
利用Django模版生成树状结构实例代码
May 19 Python
win8.1安装Python 2.7版环境图文详解
Jul 01 Python
ZABBIX3.2使用python脚本实现监控报表的方法
Jul 02 Python
python新手学习使用库
Jun 11 Python
python 用Matplotlib作图中有多个Y轴
Nov 28 #Python
基于python实现监听Rabbitmq系统日志代码示例
Nov 28 #Python
Python Http请求json解析库用法解析
Nov 28 #Python
基于Django集成CAS实现流程详解
Nov 28 #Python
Django haystack实现全文搜索代码示例
Nov 28 #Python
windows下python 3.9 Numpy scipy和matlabplot的安装教程详解
Nov 28 #Python
关于Python 解决Python3.9 pandas.read_excel(‘xxx.xlsx‘)报错的问题
Nov 28 #Python
You might like
php 用checkbox一次性删除多条记录的方法
2010/02/23 PHP
实现获取http内容的php函数分享
2014/02/16 PHP
详解HTTP Cookie状态管理机制
2016/01/14 PHP
php 魔术常量详解及实例代码
2016/12/04 PHP
PHP单例模式与工厂模式详解
2017/08/29 PHP
laravel如何开启跨域功能示例详解
2017/08/31 PHP
Laravel框架处理用户的请求操作详解
2019/12/20 PHP
一个选择最快的服务器转向代码
2009/04/27 Javascript
JavaScript中的集合及效率
2010/01/08 Javascript
JQuery select标签操作代码段
2010/05/16 Javascript
用jquery实现输入框获取焦点消失文字
2013/04/27 Javascript
页面右下角弹出提示框示例代码js版
2013/08/02 Javascript
JavaScript实现网站访问次数统计代码
2015/08/12 Javascript
有关Promises异步问题详解
2015/11/13 Javascript
EasyUI加载完Html内容样式渲染完成后显示
2016/07/25 Javascript
Javascript获取background属性中url的值
2016/10/17 Javascript
js基础之DOM中document对象的常用属性方法详解
2016/10/28 Javascript
微信小程序 动态的设置图片的高度和宽度详解及实例代码
2017/02/24 Javascript
详解vue2.0 使用动态组件实现 Tab 标签页切换效果(vue-cli)
2017/08/30 Javascript
js移动端图片压缩上传功能
2020/08/18 Javascript
angular中ui calendar的一些使用心得(推荐)
2017/11/03 Javascript
vue.js select下拉框绑定和取值方法
2018/03/03 Javascript
JavaScript实现随机点名器实例详解
2019/05/07 Javascript
对Python多线程读写文件加锁的实例详解
2019/01/14 Python
Tensorflow分类器项目自定义数据读入的实现
2019/02/05 Python
使用 Django Highcharts 实现数据可视化过程解析
2019/07/31 Python
TensorFlow实现自定义Op方式
2020/02/04 Python
python输出第n个默尼森数的实现示例
2020/03/08 Python
如何理解Python中包的引入
2020/05/29 Python
独特的礼品和创新的科技产品:The Grommet
2018/02/24 全球购物
商场拾金不昧表扬信
2014/01/13 职场文书
情侣吵架检讨书
2014/02/05 职场文书
寻找成龙观后感
2015/06/12 职场文书
道士塔读书笔记
2015/06/30 职场文书
导游词之南京汤山温泉
2019/11/26 职场文书
vue使用element-ui按需引入
2022/05/20 Vue.js