TensorFlow实现自定义Op方式


Posted in Python onFebruary 04, 2020

『写在前面』

以CTC Beam search decoder为例,简单整理一下TensorFlow实现自定义Op的操作流程。

基本的流程

1. 定义Op接口

#include "tensorflow/core/framework/op.h"
 
REGISTER_OP("Custom")  
  .Input("custom_input: int32")
  .Output("custom_output: int32");

2. 为Op实现Compute操作(CPU)或实现kernel(GPU)

#include "tensorflow/core/framework/op_kernel.h"
 
using namespace tensorflow;
 
class CustomOp : public OpKernel{
  public:
  explicit CustomOp(OpKernelConstruction* context) : OpKernel(context) {}
  void Compute(OpKernelContext* context) override {
  // 获取输入 tensor.
  const Tensor& input_tensor = context->input(0);
  auto input = input_tensor.flat<int32>();
  // 创建一个输出 tensor.
  Tensor* output_tensor = NULL;
  OP_REQUIRES_OK(context, context->allocate_output(0, input_tensor.shape(),
                           &output_tensor));
  auto output = output_tensor->template flat<int32>();
  //进行具体的运算,操作input和output
  //……
 }
};

3. 将实现的kernel注册到TensorFlow系统中

REGISTER_KERNEL_BUILDER(Name("Custom").Device(DEVICE_CPU), CustomOp);

CTCBeamSearchDecoder自定义

该Op对应TensorFlow中的源码部分

Op接口的定义:

tensorflow-master/tensorflow/core/ops/ctc_ops.cc

CTCBeamSearchDecoder本身的定义:

tensorflow-master/tensorflow/core/util/ctc/ctc_beam_search.cc

Op-Class的封装与Op注册:

tensorflow-master/tensorflow/core/kernels/ctc_decoder_ops.cc

基于源码修改的Op

#include <algorithm>
#include <vector>
#include <cmath>
 
#include "tensorflow/core/util/ctc/ctc_beam_search.h"
 
#include "tensorflow/core/framework/op.h"
#include "tensorflow/core/framework/op_kernel.h"
#include "tensorflow/core/framework/shape_inference.h"
#include "tensorflow/core/kernels/bounds_check.h"
 
namespace tf = tensorflow;
using tf::shape_inference::DimensionHandle;
using tf::shape_inference::InferenceContext;
using tf::shape_inference::ShapeHandle;
 
using namespace tensorflow;
 
REGISTER_OP("CTCBeamSearchDecoderWithParam")
  .Input("inputs: float")
  .Input("sequence_length: int32")
  .Attr("beam_width: int >= 1")
  .Attr("top_paths: int >= 1")
  .Attr("merge_repeated: bool = true")
  //新添加了两个参数
  .Attr("label_selection_size: int >= 0 = 0") 
  .Attr("label_selection_margin: float") 
  .Output("decoded_indices: top_paths * int64")
  .Output("decoded_values: top_paths * int64")
  .Output("decoded_shape: top_paths * int64")
  .Output("log_probability: float")
  .SetShapeFn([](InferenceContext* c) {
   ShapeHandle inputs;
   ShapeHandle sequence_length;
 
   TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 3, &inputs));
   TF_RETURN_IF_ERROR(c->WithRank(c->input(1), 1, &sequence_length));
 
   // Get batch size from inputs and sequence_length.
   DimensionHandle batch_size;
   TF_RETURN_IF_ERROR(
     c->Merge(c->Dim(inputs, 1), c->Dim(sequence_length, 0), &batch_size));
 
   int32 top_paths;
   TF_RETURN_IF_ERROR(c->GetAttr("top_paths", &top_paths));
 
   // Outputs.
   int out_idx = 0;
   for (int i = 0; i < top_paths; ++i) { // decoded_indices
    c->set_output(out_idx++, c->Matrix(InferenceContext::kUnknownDim, 2));
   }
   for (int i = 0; i < top_paths; ++i) { // decoded_values
    c->set_output(out_idx++, c->Vector(InferenceContext::kUnknownDim));
   }
   ShapeHandle shape_v = c->Vector(2);
   for (int i = 0; i < top_paths; ++i) { // decoded_shape
    c->set_output(out_idx++, shape_v);
   }
   c->set_output(out_idx++, c->Matrix(batch_size, top_paths));
   return Status::OK();
  });
 
typedef Eigen::ThreadPoolDevice CPUDevice;
 
inline float RowMax(const TTypes<float>::UnalignedConstMatrix& m, int r,
          int* c) {
 *c = 0;
 CHECK_LT(0, m.dimension(1));
 float p = m(r, 0);
 for (int i = 1; i < m.dimension(1); ++i) {
  if (m(r, i) > p) {
   p = m(r, i);
   *c = i;
  }
 }
 return p;
}
 
class CTCDecodeHelper {
 public:
 CTCDecodeHelper() : top_paths_(1) {}
 
 inline int GetTopPaths() const { return top_paths_; }
 void SetTopPaths(int tp) { top_paths_ = tp; }
 
 Status ValidateInputsGenerateOutputs(
   OpKernelContext* ctx, const Tensor** inputs, const Tensor** seq_len,
   Tensor** log_prob, OpOutputList* decoded_indices,
   OpOutputList* decoded_values, OpOutputList* decoded_shape) const {
  Status status = ctx->input("inputs", inputs);
  if (!status.ok()) return status;
  status = ctx->input("sequence_length", seq_len);
  if (!status.ok()) return status;
 
  const TensorShape& inputs_shape = (*inputs)->shape();
 
  if (inputs_shape.dims() != 3) {
   return errors::InvalidArgument("inputs is not a 3-Tensor");
  }
 
  const int64 max_time = inputs_shape.dim_size(0);
  const int64 batch_size = inputs_shape.dim_size(1);
 
  if (max_time == 0) {
   return errors::InvalidArgument("max_time is 0");
  }
  if (!TensorShapeUtils::IsVector((*seq_len)->shape())) {
   return errors::InvalidArgument("sequence_length is not a vector");
  }
 
  if (!(batch_size == (*seq_len)->dim_size(0))) {
   return errors::FailedPrecondition(
     "len(sequence_length) != batch_size. ", "len(sequence_length): ",
     (*seq_len)->dim_size(0), " batch_size: ", batch_size);
  }
 
  auto seq_len_t = (*seq_len)->vec<int32>();
 
  for (int b = 0; b < batch_size; ++b) {
   if (!(seq_len_t(b) <= max_time)) {
    return errors::FailedPrecondition("sequence_length(", b, ") <= ",
                     max_time);
   }
  }
 
  Status s = ctx->allocate_output(
    "log_probability", TensorShape({batch_size, top_paths_}), log_prob);
  if (!s.ok()) return s;
 
  s = ctx->output_list("decoded_indices", decoded_indices);
  if (!s.ok()) return s;
  s = ctx->output_list("decoded_values", decoded_values);
  if (!s.ok()) return s;
  s = ctx->output_list("decoded_shape", decoded_shape);
  if (!s.ok()) return s;
 
  return Status::OK();
 }
 
 // sequences[b][p][ix] stores decoded value "ix" of path "p" for batch "b".
 Status StoreAllDecodedSequences(
   const std::vector<std::vector<std::vector<int> > >& sequences,
   OpOutputList* decoded_indices, OpOutputList* decoded_values,
   OpOutputList* decoded_shape) const {
  // Calculate the total number of entries for each path
  const int64 batch_size = sequences.size();
  std::vector<int64> num_entries(top_paths_, 0);
 
  // Calculate num_entries per path
  for (const auto& batch_s : sequences) {
   CHECK_EQ(batch_s.size(), top_paths_);
   for (int p = 0; p < top_paths_; ++p) {
    num_entries[p] += batch_s[p].size();
   }
  }
 
  for (int p = 0; p < top_paths_; ++p) {
   Tensor* p_indices = nullptr;
   Tensor* p_values = nullptr;
   Tensor* p_shape = nullptr;
 
   const int64 p_num = num_entries[p];
 
   Status s =
     decoded_indices->allocate(p, TensorShape({p_num, 2}), &p_indices);
   if (!s.ok()) return s;
   s = decoded_values->allocate(p, TensorShape({p_num}), &p_values);
   if (!s.ok()) return s;
   s = decoded_shape->allocate(p, TensorShape({2}), &p_shape);
   if (!s.ok()) return s;
 
   auto indices_t = p_indices->matrix<int64>();
   auto values_t = p_values->vec<int64>();
   auto shape_t = p_shape->vec<int64>();
 
   int64 max_decoded = 0;
   int64 offset = 0;
 
   for (int64 b = 0; b < batch_size; ++b) {
    auto& p_batch = sequences[b][p];
    int64 num_decoded = p_batch.size();
    max_decoded = std::max(max_decoded, num_decoded);
    std::copy_n(p_batch.begin(), num_decoded, &values_t(offset));
    for (int64 t = 0; t < num_decoded; ++t, ++offset) {
     indices_t(offset, 0) = b;
     indices_t(offset, 1) = t;
    }
   }
 
   shape_t(0) = batch_size;
   shape_t(1) = max_decoded;
  }
  return Status::OK();
 }
 
 private:
 int top_paths_;
 TF_DISALLOW_COPY_AND_ASSIGN(CTCDecodeHelper);
};
 
// CTC beam search
class CTCBeamSearchDecoderWithParamOp : public OpKernel {
 public:
 explicit CTCBeamSearchDecoderWithParamOp(OpKernelConstruction* ctx) : OpKernel(ctx) {
  OP_REQUIRES_OK(ctx, ctx->GetAttr("merge_repeated", &merge_repeated_));
  OP_REQUIRES_OK(ctx, ctx->GetAttr("beam_width", &beam_width_));
  //从参数列表中读取新添的两个参数
  OP_REQUIRES_OK(ctx, ctx->GetAttr("label_selection_size", &label_selection_size));
  OP_REQUIRES_OK(ctx, ctx->GetAttr("label_selection_margin", &label_selection_margin));
  int top_paths;
  OP_REQUIRES_OK(ctx, ctx->GetAttr("top_paths", &top_paths));
  decode_helper_.SetTopPaths(top_paths);
 }
 
 void Compute(OpKernelContext* ctx) override {
  const Tensor* inputs;
  const Tensor* seq_len;
  Tensor* log_prob = nullptr;
  OpOutputList decoded_indices;
  OpOutputList decoded_values;
  OpOutputList decoded_shape;
  OP_REQUIRES_OK(ctx, decode_helper_.ValidateInputsGenerateOutputs(
              ctx, &inputs, &seq_len, &log_prob, &decoded_indices,
              &decoded_values, &decoded_shape));
 
  auto inputs_t = inputs->tensor<float, 3>();
  auto seq_len_t = seq_len->vec<int32>();
  auto log_prob_t = log_prob->matrix<float>();
 
  const TensorShape& inputs_shape = inputs->shape();
 
  const int64 max_time = inputs_shape.dim_size(0);
  const int64 batch_size = inputs_shape.dim_size(1);
  const int64 num_classes_raw = inputs_shape.dim_size(2);
  OP_REQUIRES(
    ctx, FastBoundsCheck(num_classes_raw, std::numeric_limits<int>::max()),
    errors::InvalidArgument("num_classes cannot exceed max int"));
  const int num_classes = static_cast<const int>(num_classes_raw);
 
  log_prob_t.setZero();
 
  std::vector<TTypes<float>::UnalignedConstMatrix> input_list_t;
 
  for (std::size_t t = 0; t < max_time; ++t) {
   input_list_t.emplace_back(inputs_t.data() + t * batch_size * num_classes,
                batch_size, num_classes);
  }
 
  ctc::CTCBeamSearchDecoder<> beam_search(num_classes, beam_width_,
                      &beam_scorer_, 1 /* batch_size */,
                      merge_repeated_);
  //使用传入的两个参数进行Set
  beam_search.SetLabelSelectionParameters(label_selection_size, label_selection_margin);
  Tensor input_chip(DT_FLOAT, TensorShape({num_classes}));
  auto input_chip_t = input_chip.flat<float>();
 
  std::vector<std::vector<std::vector<int> > > best_paths(batch_size);
  std::vector<float> log_probs;
 
  // Assumption: the blank index is num_classes - 1
  for (int b = 0; b < batch_size; ++b) {
   auto& best_paths_b = best_paths[b];
   best_paths_b.resize(decode_helper_.GetTopPaths());
   for (int t = 0; t < seq_len_t(b); ++t) {
    input_chip_t = input_list_t[t].chip(b, 0);
    auto input_bi =
      Eigen::Map<const Eigen::ArrayXf>(input_chip_t.data(), num_classes);
    beam_search.Step(input_bi);
   }
   OP_REQUIRES_OK(
     ctx, beam_search.TopPaths(decode_helper_.GetTopPaths(), &best_paths_b,
                  &log_probs, merge_repeated_));
 
   beam_search.Reset();
 
   for (int bp = 0; bp < decode_helper_.GetTopPaths(); ++bp) {
    log_prob_t(b, bp) = log_probs[bp];
   }
  }
 
  OP_REQUIRES_OK(ctx, decode_helper_.StoreAllDecodedSequences(
              best_paths, &decoded_indices, &decoded_values,
              &decoded_shape));
 }
 
 private:
 CTCDecodeHelper decode_helper_;
 ctc::CTCBeamSearchDecoder<>::DefaultBeamScorer beam_scorer_;
 bool merge_repeated_;
 int beam_width_;
 //新添两个数据成员,用于存储新加的参数
 int label_selection_size;
 float label_selection_margin;
 TF_DISALLOW_COPY_AND_ASSIGN(CTCBeamSearchDecoderWithParamOp);
};
 
REGISTER_KERNEL_BUILDER(Name("CTCBeamSearchDecoderWithParam").Device(DEVICE_CPU),
            CTCBeamSearchDecoderWithParamOp);

将自定义的Op编译成.so文件

在tensorflow-master目录下新建一个文件夹custom_op

cd custom_op

新建一个BUILD文件,并在其中添加如下代码:

cc_library(
  name = "ctc_decoder_with_param",
  srcs = [
      "new_beamsearch.cc"
      ] +
      glob(["boost_locale/**/*.hpp"]),
  includes = ["boost_locale"],
  copts = ["-std=c++11"],
  deps = ["//tensorflow/core:core",
      "//tensorflow/core/util/ctc",
      "//third_party/eigen3",
  ],
)

编译过程:

1. cd 到 tensorflow-master 目录下

2. bazel build -c opt --copt=-O3 //tensorflow:libtensorflow_cc.so //custom_op:ctc_decoder_with_param

3. bazel-bin/custom_op 目录下生成 libctc_decoder_with_param.so

在训练(预测)程序中使用自定义的Op

在程序中定义如下的方法:

decode_param_op_module = tf.load_op_library('libctc_decoder_with_param.so')
def decode_with_param(inputs, sequence_length, beam_width=100,
          top_paths=1, merge_repeated=True):
  decoded_ixs, decoded_vals, decoded_shapes, log_probabilities = (
    decode_param_op_module.ctc_beam_search_decoder_with_param(
      inputs, sequence_length, beam_width=beam_width,
      top_paths=top_paths, merge_repeated=merge_repeated,
      label_selection_size=40, label_selection_margin=0.99))
  return (
    [tf.SparseTensor(ix, val, shape) for (ix, val, shape)
     in zip(decoded_ixs, decoded_vals, decoded_shapes)],
    log_probabilities)

然后就可以像使用tf.nn.ctc_beam_search_decoder一样使用该Op了。

以上这篇TensorFlow实现自定义Op方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python使用pyhook监控键盘并实现切换歌曲的功能
Jul 18 Python
Python类的用法实例浅析
May 27 Python
python去掉行尾的换行符方法
Jan 04 Python
python实现最长公共子序列
May 22 Python
Centos下实现安装Python3.6和Python2共存
Aug 15 Python
基于python解线性矩阵方程(numpy中的matrix类)
Oct 21 Python
python使用 cx_Oracle 模块进行查询操作示例
Nov 28 Python
浅谈django 模型类使用save()方法的好处与注意事项
Mar 28 Python
python函数调用,循环,列表复制实例
May 03 Python
Python xlrd模块导入过程及常用操作
Jun 10 Python
Python包和模块的分发详细介绍
Jun 19 Python
2021年的Python 时间轴和即将推出的功能详解
Jul 27 Python
tensorflow使用指定gpu的方法
Feb 04 #Python
TensorFlow梯度求解tf.gradients实例
Feb 04 #Python
基于TensorFlow中自定义梯度的2种方式
Feb 04 #Python
tensorflow 查看梯度方式
Feb 04 #Python
opencv python图像梯度实例详解
Feb 04 #Python
TensorFlow设置日志级别的几种方式小结
Feb 04 #Python
Python 实现加密过的PDF文件转WORD格式
Feb 04 #Python
You might like
PHP通过COM使用ADODB的简单例子
2006/12/31 PHP
Apache+php+mysql在windows下的安装与配置图解(最新版)
2008/11/30 PHP
Laravel 5.5官方推荐的Nginx配置学习教程
2017/10/06 PHP
PHP实现求两个字符串最长公共子串的方法示例
2017/11/17 PHP
jQuery 1.5.1 发布,全面支持IE9 修复大量bug
2011/02/26 Javascript
jQuery中使用了document和window哪些属性和方法小结
2011/09/13 Javascript
关于scrollLeft,scrollTop的浏览器兼容性测试
2013/03/19 Javascript
招聘网站基于jQuery实现自动刷新简历
2015/05/10 Javascript
浅谈javascript的分号的使用
2015/05/12 Javascript
js闭包所用的场合以及优缺点分析
2015/06/22 Javascript
js实现仿京东2级菜单效果(带延时功能)
2015/08/27 Javascript
以jQuery中$.Deferred对象为例讲解promise对象是如何处理异步问题
2015/11/13 Javascript
js实现的星星评分功能函数
2015/12/09 Javascript
浅析JavaScript声明变量
2015/12/21 Javascript
js添加事件的通用方法推荐
2016/05/15 Javascript
轻松掌握JavaScript单例模式
2016/08/25 Javascript
解析Javascript单例模式概念与实例
2016/12/05 Javascript
JS轮播图中缓动函数的封装
2020/11/25 Javascript
详解angularjs利用ui-route异步加载组件
2017/05/21 Javascript
vue指令做滚动加载和监听等
2019/05/26 Javascript
微信小程序如何引用外部js,外部样式,公共页面模板
2019/07/23 Javascript
基于node+vue实现简单的WebSocket聊天功能
2020/02/01 Javascript
原生JavaScript实现弹幕组件的示例代码
2020/10/12 Javascript
JS创建自定义对象的六种方法总结
2020/12/15 Javascript
在Python中使用mongoengine操作MongoDB教程
2015/04/24 Python
Python如何基于smtplib发不同格式的邮件
2019/12/30 Python
python3.7.3版本和django2.2.3版本是否可以兼容
2020/09/01 Python
Python爬虫过程解析之多线程获取小米应用商店数据
2020/11/14 Python
css3与html5实现响应式导航菜单(导航栏)效果分享
2014/02/12 HTML / CSS
详解HTML5中的标签
2015/06/19 HTML / CSS
美国最大的袜子制造商和零售商:Renfro Socks
2017/09/03 全球购物
领导接待方案
2014/03/13 职场文书
2014教师研修学习体会
2014/07/08 职场文书
初级职称评定工作总结
2015/08/13 职场文书
经销商会议开幕词
2016/03/04 职场文书
python异步的ASGI与Fast Api实现
2021/07/16 Python