tensorflow使用指定gpu的方法


Posted in Python onFebruary 04, 2020

TensorFlow是一个基于数据流编程(dataflow programming)的符号数学系统,被广泛应用于各类机器学习(machine learning)算法的编程实现,其前身是谷歌的神经网络算法库DistBelief [1]  。
Tensorflow拥有多层级结构,可部署于各类服务器、PC终端和网页并支持GPU和TPU高性能数值计算,被广泛应用于谷歌内部的产品开发和各领域的科学研究 。

TensorFlow由谷歌人工智能团队谷歌大脑(Google Brain)开发和维护,拥有包括TensorFlow Hub、TensorFlow Lite、TensorFlow Research Cloud在内的多个项目以及各类应用程序接口(Application Programming Interface, API) 。自2015年11月9日起,TensorFlow依据阿帕奇授权协议(Apache 2.0 open source license)开放源代码 。

持续监控GPU使用情况命令:

$ watch -n 10 nvidia-smi

一、指定使用某个显卡

如果机器中有多块GPU,tensorflow会默认吃掉所有能用的显存, 如果实验室多人公用一台服务器,希望指定使用特定某块GPU。
可以在文件开头加入如下代码:

import os
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "1"  # 使用第二块GPU(从0开始)

也可以制定使用某几块GPU

import os
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "0, 2" # 使用第一, 三块GPU

禁用GPU

import os
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"

支持的设备

在一套标准系统中通常有多台计算设备。TensorFlow 支持 CPU 和 GPU 这两种设备。它们均用 strings 表示。例如:

"/cpu:0":机器的 CPU。
"/device:GPU:0":机器的 GPU(如果有一个)。
"/device:GPU:1":机器的第二个 GPU(以此类推)。

如果 TensorFlow 指令中兼有 CPU 和 GPU 实现,当该指令分配到设备时,GPU 设备有优先权。例如,如果 matmul 同时存在 CPU 和 GPU 核函数,在同时有 cpu:0 和 gpu:0 设备的系统中,gpu:0 会被选来运行 matmul。

记录设备分配方式

要找出您的指令和张量被分配到哪个设备,请创建会话并将 log_device_placement 配置选项设为 True。

#Creates a graph.
a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a')
b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b')
c = tf.matmul(a, b)
#Creates a session with log_device_placement set to True.
sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
#Runs the op.
print(sess.run(c))

应该会看到以下输出内容:

Device mapping:
/job:localhost/replica:0/task:0/device:GPU:0 -> device: 0, name: Tesla K40c, pci bus
id: 0000:05:00.0
b: /job:localhost/replica:0/task:0/device:GPU:0
a: /job:localhost/replica:0/task:0/device:GPU:0
MatMul: /job:localhost/replica:0/task:0/device:GPU:0
[[ 22. 28.]
 [ 49. 64.]]

手动分配设备

如果您希望特定指令在您选择的设备(而非系统自动为您选择的设备)上运行,您可以使用 with tf.device 创建设备上下文,这个上下文中的所有指令都将被分配在同一个设备上运行。

# Creates a graph.
with tf.device('/cpu:0'):
 a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a')
 b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b')
c = tf.matmul(a, b)
# Creates a session with log_device_placement set to True.
sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
# Runs the op.
print(sess.run(c))

您会看到现在 a 和 b 被分配到 cpu:0。由于未明确指定运行 MatMul 指令的设备,因此 TensorFlow 运行时将根据指令和可用设备(此示例中的 gpu:0)选择一个设备,并会根据要求自动复制设备间的张量。

Device mapping:
/job:localhost/replica:0/task:0/device:GPU:0 -> device: 0, name: Tesla K40c, pci bus
id: 0000:05:00.0
b: /job:localhost/replica:0/task:0/cpu:0
a: /job:localhost/replica:0/task:0/cpu:0
MatMul: /job:localhost/replica:0/task:0/device:GPU:0
[[ 22. 28.]
 [ 49. 64.]]

允许增加 GPU 内存

默认情况下,TensorFlow 会映射进程可见的所有 GPU 的几乎所有 GPU 内存(取决于 CUDA_VISIBLE_DEVICES)。通过减少内存碎片,可以更有效地使用设备上相对宝贵的 GPU 内存资源。

在某些情况下,最理想的是进程只分配可用内存的一个子集,或者仅根据进程需要增加内存使用量。 TensorFlow 在 Session 上提供两个 Config 选项来进行控制。

第一个是 allow_growth 选项,它试图根据运行时的需要来分配 GPU 内存:它刚开始分配很少的内存,随着 Session 开始运行并需要更多 GPU 内存,我们会扩展 TensorFlow 进程所需的 GPU 内存区域。请注意,我们不会释放内存,因为这可能导致出现更严重的内存碎片情况。要开启此选项,请通过以下方式在 ConfigProto 中设置选项:

config = tf.ConfigProto()
config.gpu_options.allow_growth = True
session = tf.Session(config=config, ...)

第二个是 per_process_gpu_memory_fraction 选项,它可以决定每个可见 GPU 应分配到的内存占总内存量的比例。例如,您可以通过以下方式指定 TensorFlow 仅分配每个 GPU 总内存的 40%:

config = tf.ConfigProto()
config.gpu_options.per_process_gpu_memory_fraction = 0.4
session = tf.Session(config=config, ...)

如要真正限制 TensorFlow 进程可使用的 GPU 内存量,这非常实用。

在多 GPU 系统中使用单一 GPU
如果您的系统中有多个 GPU,则默认情况下将选择 ID 最小的 GPU。如果您希望在其他 GPU 上运行,则需要显式指定偏好设置:

# Creates a graph.
with tf.device('/device:GPU:2'):
 a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a')
 b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b')
 c = tf.matmul(a, b)
# Creates a session with log_device_placement set to True.
sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
# Runs the op.
print(sess.run(c))

如果您指定的设备不存在,您会看到 InvalidArgumentError:

InvalidArgumentError: Invalid argument: Cannot assign a device to node 'b':
Could not satisfy explicit device specification '/device:GPU:2'
 [[Node: b = Const[dtype=DT_FLOAT, value=Tensor<type: float shape: [3,2]
 values: 1 2 3...>, _device="/device:GPU:2"]()]]

当指定设备不存在时,如果您希望 TensorFlow 自动选择现有的受支持设备来运行指令,则可以在创建会话时将配置选项中的 allow_soft_placement 设为 True。

# Creates a graph.
with tf.device('/device:GPU:2'):
 a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a')
 b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b')
 c = tf.matmul(a, b)
# Creates a session with allow_soft_placement and log_device_placement set
# to True.
sess = tf.Session(config=tf.ConfigProto(
  allow_soft_placement=True, log_device_placement=True))
# Runs the op.
print(sess.run(c))

使用多个 GPU

如果您想要在多个 GPU 上运行 TensorFlow,则可以采用多塔式方式构建模型,其中每个塔都会分配给不同 GPU。例如:

# Creates a graph.
c = []
for d in ['/device:GPU:2', '/device:GPU:3']:
 with tf.device(d):
 a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3])
 b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2])
 c.append(tf.matmul(a, b))
with tf.device('/cpu:0'):
 sum = tf.add_n(c)
# Creates a session with log_device_placement set to True.
sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
# Runs the op.
print(sess.run(sum))

您会看到以下输出内容:

Device mapping:
/job:localhost/replica:0/task:0/device:GPU:0 -> device: 0, name: Tesla K20m, pci bus
id: 0000:02:00.0
/job:localhost/replica:0/task:0/device:GPU:1 -> device: 1, name: Tesla K20m, pci bus
id: 0000:03:00.0
/job:localhost/replica:0/task:0/device:GPU:2 -> device: 2, name: Tesla K20m, pci bus
id: 0000:83:00.0
/job:localhost/replica:0/task:0/device:GPU:3 -> device: 3, name: Tesla K20m, pci bus
id: 0000:84:00.0
Const_3: /job:localhost/replica:0/task:0/device:GPU:3
Const_2: /job:localhost/replica:0/task:0/device:GPU:3
MatMul_1: /job:localhost/replica:0/task:0/device:GPU:3
Const_1: /job:localhost/replica:0/task:0/device:GPU:2
Const: /job:localhost/replica:0/task:0/device:GPU:2
MatMul: /job:localhost/replica:0/task:0/device:GPU:2
AddN: /job:localhost/replica:0/task:0/cpu:0
[[ 44. 56.]
 [ 98. 128.]]

cifar10 教程就是个很好的例子,演示了如何使用多个 GPU 进行训练。

见官方教程:https://www.tensorflow.org/programmers_guide/using_gpu?hl=zh-cn

总结

以上所述是小编给大家介绍的tensorflow使用指定gpu的方法,希望对大家有所帮助!

Python 相关文章推荐
Python实例之wxpython中Frame使用方法
Jun 09 Python
Python中字符串对齐方法介绍
May 21 Python
KMP算法精解及其Python版的代码示例
Jun 01 Python
Python实现多进程共享数据的方法分析
Dec 04 Python
Python解决抛小球问题 求小球下落经历的距离之和示例
Feb 01 Python
Django处理多用户类型的方法介绍
May 18 Python
django自带serializers序列化返回指定字段的方法
Aug 21 Python
Python解压 rar、zip、tar文件的方法
Nov 19 Python
Python三元运算与lambda表达式实例解析
Nov 30 Python
Python正则表达式急速入门(小结)
Dec 16 Python
Python Pickle 实现在同一个文件中序列化多个对象
Dec 30 Python
深度学习入门之Pytorch 数据增强的实现
Feb 26 Python
TensorFlow梯度求解tf.gradients实例
Feb 04 #Python
基于TensorFlow中自定义梯度的2种方式
Feb 04 #Python
tensorflow 查看梯度方式
Feb 04 #Python
opencv python图像梯度实例详解
Feb 04 #Python
TensorFlow设置日志级别的几种方式小结
Feb 04 #Python
Python 实现加密过的PDF文件转WORD格式
Feb 04 #Python
解决tensorflow打印tensor有省略号的问题
Feb 04 #Python
You might like
PHP数据库万能引擎类adodb配置使用以及实例集锦
2014/06/12 PHP
PHP模板解析类实例
2015/07/09 PHP
PHP+jQuery+Ajax实现分页效果 jPaginate插件的应用
2015/10/09 PHP
使用IE的地址栏来辅助调试Web页脚本
2007/03/08 Javascript
js实现一个省市区三级联动选择框代码分享
2013/03/06 Javascript
jsp js鼠标移动到指定区域显示选项卡离开时隐藏示例
2013/06/14 Javascript
js兼容火狐显示上传图片预览效果的方法
2015/05/21 Javascript
AngularJS表单详解及示例代码
2016/08/17 Javascript
JSON 数据详解及实例代码分析
2017/01/20 Javascript
用Nodejs搭建服务器访问html、css、JS等静态资源文件
2017/04/28 NodeJs
详解Angular之constructor和ngOnInit差异及适用场景
2017/06/22 Javascript
vue2手机APP项目添加开屏广告或者闪屏广告
2017/11/28 Javascript
vue-router动态设置页面title的实例讲解
2018/08/30 Javascript
vue 双向数据绑定的实现学习之监听器的实现方法
2018/11/30 Javascript
JS开发常用工具函数(小结)
2019/07/04 Javascript
vue使用自定义指令实现拖拽
2021/01/29 Javascript
vue+axios全局添加请求头和参数操作
2020/07/24 Javascript
Vue-cli 移动端布局和动画使用详解
2020/08/10 Javascript
python微信跳一跳游戏辅助代码解析
2018/01/29 Python
对numpy数据写入文件的方法讲解
2018/07/09 Python
Python实现投影法分割图像示例(一)
2020/01/17 Python
Python 发送邮件方法总结
2020/08/10 Python
详解基于python的图像Gabor变换及特征提取
2020/10/26 Python
解决pycharm 格式报错tabs和space不一致问题
2021/02/26 Python
CSS3制作彩色进度条样式的代码示例分享
2016/06/23 HTML / CSS
美国最流行的男士时尚网站:Touch of Modern
2018/02/05 全球购物
来自世界各地的饮料:Flavourly
2019/05/06 全球购物
党员岗位承诺口号大全
2014/03/28 职场文书
单位作风建设自查报告
2014/10/23 职场文书
无婚姻登记记录证明
2015/06/18 职场文书
2016年寒假家长评语
2015/10/10 职场文书
商业计划书之服装
2019/09/09 职场文书
Mysql中一千万条数据怎么快速查询
2021/12/06 MySQL
使用PostGIS完成两点间的河流轨迹及流经长度的计算(推荐)
2022/01/18 PostgreSQL
Typescript类型系统FLOW静态检查基本规范
2022/05/25 Javascript
JS前端宏任务微任务及Event Loop使用详解
2022/07/23 Javascript