对pandas中to_dict的用法详解


Posted in Python onJune 05, 2018

简介:pandas 中的to_dict 可以对DataFrame类型的数据进行转换

可以选择六种的转换类型,分别对应于参数 ‘dict', ‘list', ‘series', ‘split', ‘records', ‘index',下面逐一介绍每种的用法

Help on method to_dict in module pandas.core.frame:
to_dict(orient='dict') method of pandas.core.frame.DataFrame instance
 Convert DataFrame to dictionary.
 Parameters
 ----------
 orient : str {'dict', 'list', 'series', 'split', 'records', 'index'}
 Determines the type of the values of the dictionary.
 - dict (default) : dict like {column -> {index -> value}}
 - list : dict like {column -> [values]}
 - series : dict like {column -> Series(values)}
 - split : dict like
  {index -> [index], columns -> [columns], data -> [values]}
 - records : list like
  [{column -> value}, ... , {column -> value}]
 - index : dict like {index -> {column -> value}}
  .. versionadded:: 0.17.0
 Abbreviations are allowed. `s` indicates `series` and `sp`
 indicates `split`.
 Returns
 -------
 result : dict like {column -> {index -> value}}

1、选择参数orient='dict'

dict也是默认的参数,下面的data数据类型为DataFrame结构, 会形成 {column -> {index -> value}}这样的结构的字典,可以看成是一种双重字典结构

- 单独提取每列的值及其索引,然后组合成一个字典

- 再将上述的列属性作为关键字(key),值(values)为上述的字典

查询方式为 :data_dict[key1][key2]

- data_dict 为参数选择orient='dict'时的数据名

- key1 为列属性的键值(外层)

- key2 为内层字典对应的键值

data 
Out[9]: 
 pclass age embarked   home.dest sex
1086 3rd 31.194181 UNKNOWN   UNKNOWN male
12 1st 31.194181 Cherbourg   Paris, France female
1036 3rd 31.194181 UNKNOWN   UNKNOWN male
833 3rd 32.000000 Southampton Foresvik, Norway Portland, ND male
1108 3rd 31.194181 UNKNOWN   UNKNOWN male
562 2nd 41.000000 Cherbourg   New York, NY male
437 2nd 48.000000 Southampton Somerset / Bernardsville, NJ female
663 3rd 26.000000 Southampton   UNKNOWN male
669 3rd 19.000000 Southampton   England male
507 2nd 31.194181 Southampton  Petworth, Sussex male
In[10]: data_dict=data.to_dict(orient= 'dict')
In[11]: data_dict
Out[11]: 
{'age': {12: 31.19418104265403,
 437: 48.0,
 507: 31.19418104265403,
 562: 41.0,
 663: 26.0,
 669: 19.0,
 833: 32.0,
 1036: 31.19418104265403,
 1086: 31.19418104265403,
 1108: 31.19418104265403},
 'embarked': {12: 'Cherbourg',
 437: 'Southampton',
 507: 'Southampton',
 562: 'Cherbourg',
 663: 'Southampton',
 669: 'Southampton',
 833: 'Southampton',
 1036: 'UNKNOWN',
 1086: 'UNKNOWN',
 1108: 'UNKNOWN'},
 'home.dest': {12: 'Paris, France',
 437: 'Somerset / Bernardsville, NJ',
 507: 'Petworth, Sussex',
 562: 'New York, NY',
 663: 'UNKNOWN',
 669: 'England',
 833: 'Foresvik, Norway Portland, ND',
 1036: 'UNKNOWN',
 1086: 'UNKNOWN',
 1108: 'UNKNOWN'},
 'pclass': {12: '1st',
 437: '2nd',
 507: '2nd',
 562: '2nd',
 663: '3rd',
 669: '3rd',
 833: '3rd',
 1036: '3rd',
 1086: '3rd',
 1108: '3rd'},
 'sex': {12: 'female',
 437: 'female',
 507: 'male',
 562: 'male',
 663: 'male',
 669: 'male',
 833: 'male',
 1036: 'male',
 1086: 'male',
 1108: 'male'}}

2、当关键字orient=' list' 时

和1中比较相似,只不过内层变成了一个列表,结构为{column -> [values]}

查询方式为: data_list[keys][index]

data_list 为关键字orient='list' 时对应的数据名

keys 为列属性的键值,如本例中的'age' , ‘embarked'等

index 为整型索引,从0开始到最后

In[19]: data_list=data.to_dict(orient='list')
In[20]: data_list
Out[20]: 
{'age': [31.19418104265403,
 31.19418104265403,
 31.19418104265403,
 32.0,
 31.19418104265403,
 41.0,
 48.0,
 26.0,
 19.0,
 31.19418104265403],
 'embarked': ['UNKNOWN',
 'Cherbourg',
 'UNKNOWN',
 'Southampton',
 'UNKNOWN',
 'Cherbourg',
 'Southampton',
 'Southampton',
 'Southampton',
 'Southampton'],
 'home.dest': ['UNKNOWN',
 'Paris, France',
 'UNKNOWN',
 'Foresvik, Norway Portland, ND',
 'UNKNOWN',
 'New York, NY',
 'Somerset / Bernardsville, NJ',
 'UNKNOWN',
 'England',
 'Petworth, Sussex'],
 'pclass': ['3rd',
 '1st',
 '3rd',
 '3rd',
 '3rd',
 '2nd',
 '2nd',
 '3rd',
 '3rd',
 '2nd'],
 'sex': ['male',
 'female',
 'male',
 'male',
 'male',
 'male',
 'female',
 'male',
 'male',
 'male']}

3、关键字参数orient='series'

形成结构{column -> Series(values)}

调用格式为:data_series[key1][key2]或data_dict[key1]

data_series 为数据对应的名字

key1 为列属性的键值,如本例中的'age' , ‘embarked'等

key2 使用数据原始的索引(可选)

In[21]: data_series=data.to_dict(orient='series')
In[22]: data_series
Out[22]: 
{'age': 1086 31.194181
 12 31.194181
 1036 31.194181
 833 32.000000
 1108 31.194181
 562 41.000000
 437 48.000000
 663 26.000000
 669 19.000000
 507 31.194181
 Name: age, dtype: float64, 'embarked': 1086 UNKNOWN
 12 Cherbourg
 1036 UNKNOWN
 833 Southampton
 1108 UNKNOWN
 562 Cherbourg
 437 Southampton
 663 Southampton
 669 Southampton
 507 Southampton
 Name: embarked, dtype: object, 'home.dest': 1086    UNKNOWN
 12   Paris, France
 1036    UNKNOWN
 833 Foresvik, Norway Portland, ND
 1108    UNKNOWN
 562   New York, NY
 437 Somerset / Bernardsville, NJ
 663    UNKNOWN
 669    England
 507   Petworth, Sussex
 Name: home.dest, dtype: object, 'pclass': 1086 3rd
 12 1st
 1036 3rd
 833 3rd
 1108 3rd
 562 2nd
 437 2nd
 663 3rd
 669 3rd
 507 2nd
 Name: pclass, dtype: object, 'sex': 1086 male
 12 female
 1036 male
 833 male
 1108 male
 562 male
 437 female
 663 male
 669 male
 507 male
 Name: sex, dtype: object}

4、关键字参数orient='split'

形成{index -> [index], columns -> [columns], data -> [values]}的结构,是将数据、索引、属性名单独脱离出来构成字典

调用方式有 data_split[‘index'],data_split[‘data'],data_split[‘columns']

data_split=data.to_dict(orient='split')
data_split
Out[38]: 
{'columns': ['pclass', 'age', 'embarked', 'home.dest', 'sex'],
 'data': [['3rd', 31.19418104265403, 'UNKNOWN', 'UNKNOWN', 'male'],
 ['1st', 31.19418104265403, 'Cherbourg', 'Paris, France', 'female'],
 ['3rd', 31.19418104265403, 'UNKNOWN', 'UNKNOWN', 'male'],
 ['3rd', 32.0, 'Southampton', 'Foresvik, Norway Portland, ND', 'male'],
 ['3rd', 31.19418104265403, 'UNKNOWN', 'UNKNOWN', 'male'],
 ['2nd', 41.0, 'Cherbourg', 'New York, NY', 'male'],
 ['2nd', 48.0, 'Southampton', 'Somerset / Bernardsville, NJ', 'female'],
 ['3rd', 26.0, 'Southampton', 'UNKNOWN', 'male'],
 ['3rd', 19.0, 'Southampton', 'England', 'male'],
 ['2nd', 31.19418104265403, 'Southampton', 'Petworth, Sussex', 'male']],
 'index': [1086, 12, 1036, 833, 1108, 562, 437, 663, 669, 507]}

5、当关键字orient='records' 时

形成[{column -> value}, … , {column -> value}]的结构

整体构成一个列表,内层是将原始数据的每行提取出来形成字典

调用格式为data_records[index][key1]

data_records=data.to_dict(orient='records')
data_records
Out[41]: 
[{'age': 31.19418104265403,
 'embarked': 'UNKNOWN',
 'home.dest': 'UNKNOWN',
 'pclass': '3rd',
 'sex': 'male'},
 {'age': 31.19418104265403,
 'embarked': 'Cherbourg',
 'home.dest': 'Paris, France',
 'pclass': '1st',
 'sex': 'female'},
 {'age': 31.19418104265403,
 'embarked': 'UNKNOWN',
 'home.dest': 'UNKNOWN',
 'pclass': '3rd',
 'sex': 'male'},
 {'age': 32.0,
 'embarked': 'Southampton',
 'home.dest': 'Foresvik, Norway Portland, ND',
 'pclass': '3rd',
 'sex': 'male'},
 {'age': 31.19418104265403,
 'embarked': 'UNKNOWN',
 'home.dest': 'UNKNOWN',
 'pclass': '3rd',
 'sex': 'male'},
 {'age': 41.0,
 'embarked': 'Cherbourg',
 'home.dest': 'New York, NY',
 'pclass': '2nd',
 'sex': 'male'},
 {'age': 48.0,
 'embarked': 'Southampton',
 'home.dest': 'Somerset / Bernardsville, NJ',
 'pclass': '2nd',
 'sex': 'female'},
 {'age': 26.0,
 'embarked': 'Southampton',
 'home.dest': 'UNKNOWN',
 'pclass': '3rd',
 'sex': 'male'},
 {'age': 19.0,
 'embarked': 'Southampton',
 'home.dest': 'England',
 'pclass': '3rd',
 'sex': 'male'},
 {'age': 31.19418104265403,
 'embarked': 'Southampton',
 'home.dest': 'Petworth, Sussex',
 'pclass': '2nd',
 'sex': 'male'}]

6、当关键字orient='index' 时

形成{index -> {column -> value}}的结构,调用格式正好和'dict' 对应的反过来,请读者自己思考

data_index=data.to_dict(orient='index')
data_index
Out[43]: 
{12: {'age': 31.19418104265403,
 'embarked': 'Cherbourg',
 'home.dest': 'Paris, France',
 'pclass': '1st',
 'sex': 'female'},
 437: {'age': 48.0,
 'embarked': 'Southampton',
 'home.dest': 'Somerset / Bernardsville, NJ',
 'pclass': '2nd',
 'sex': 'female'},
 507: {'age': 31.19418104265403,
 'embarked': 'Southampton',
 'home.dest': 'Petworth, Sussex',
 'pclass': '2nd',
 'sex': 'male'},
 562: {'age': 41.0,
 'embarked': 'Cherbourg',
 'home.dest': 'New York, NY',
 'pclass': '2nd',
 'sex': 'male'},
 663: {'age': 26.0,
 'embarked': 'Southampton',
 'home.dest': 'UNKNOWN',
 'pclass': '3rd',
 'sex': 'male'},
 669: {'age': 19.0,
 'embarked': 'Southampton',
 'home.dest': 'England',
 'pclass': '3rd',
 'sex': 'male'},
 833: {'age': 32.0,
 'embarked': 'Southampton',
 'home.dest': 'Foresvik, Norway Portland, ND',
 'pclass': '3rd',
 'sex': 'male'},
 1036: {'age': 31.19418104265403,
 'embarked': 'UNKNOWN',
 'home.dest': 'UNKNOWN',
 'pclass': '3rd',
 'sex': 'male'},
 1086: {'age': 31.19418104265403,
 'embarked': 'UNKNOWN',
 'home.dest': 'UNKNOWN',
 'pclass': '3rd',
 'sex': 'male'},
 1108: {'age': 31.19418104265403,
 'embarked': 'UNKNOWN',
 'home.dest': 'UNKNOWN',
 'pclass': '3rd',
 'sex': 'male'}}

以上这篇对pandas中to_dict的用法详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python中numpy的矩阵、多维数组的用法
Feb 05 Python
python opencv之分水岭算法示例
Feb 24 Python
修复 Django migration 时遇到的问题解决
Jun 14 Python
python3学习之Splash的安装与实例教程
Jul 09 Python
python实现指定字符串补全空格、前面填充0的方法
Nov 16 Python
python用插值法绘制平滑曲线
Feb 19 Python
Python 实现两个服务器之间文件的上传方法
Feb 13 Python
python ChainMap 合并字典的实现步骤
Jun 11 Python
详解在Python中以绝对路径或者相对路径导入文件的方法
Aug 30 Python
简单了解python中的f.b.u.r函数
Nov 02 Python
Python实现AI自动抠图实例解析
Mar 05 Python
linux mint中搜狗输入法导致pycharm卡死的问题
Oct 28 Python
pandas.DataFrame.to_json按行转json的方法
Jun 05 #Python
读取json格式为DataFrame(可转为.csv)的实例讲解
Jun 05 #Python
Python实现迭代时使用索引的方法示例
Jun 05 #Python
Numpy 将二维图像矩阵转换为一维向量的方法
Jun 05 #Python
django反向解析和正向解析的方式
Jun 05 #Python
Python numpy实现二维数组和一维数组拼接的方法
Jun 05 #Python
Python实现字典(dict)的迭代操作示例
Jun 05 #Python
You might like
PHP自定义大小验证码的方法详解
2013/06/07 PHP
PHP中实现生成静态文件的方法缓解服务器压力
2014/01/07 PHP
thinkphp3.2.2前后台公用类架构问题分析
2014/11/25 PHP
Laravel5中contracts详解
2015/03/02 PHP
基于PHP实现通过照片获取ip地址
2016/04/26 PHP
Laravel中Facade的加载过程与原理详解
2017/09/22 PHP
js中几种去掉字串左右空格的方法
2006/12/25 Javascript
JavaScript Konami Code 实现代码
2009/07/29 Javascript
层序遍历在ExtJs的TreePanel中的应用
2009/10/16 Javascript
客户端 使用XML DOM加载json数据的方法
2010/09/28 Javascript
jquery常用方法及使用示例汇总
2014/11/08 Javascript
node.js操作mongodb学习小结
2015/04/25 Javascript
Javascript中的数组常用方法解析
2016/06/17 Javascript
jquery pagination插件动态分页实例(Bootstrap分页)
2016/12/23 Javascript
JavaScript中捕获与冒泡详解及实例
2017/02/03 Javascript
100行代码理解和分析vue2.0响应式架构
2017/03/09 Javascript
微信小程序实现轮播图效果
2017/09/07 Javascript
JavaScript模拟实现封装的三种方式及写法区别
2017/10/27 Javascript
快速解决select2在bootstrap模态框中下拉框隐藏的问题
2018/08/10 Javascript
JavaScript常见事件处理程序实例总结
2019/01/05 Javascript
js canvas实现五子棋小游戏
2021/01/22 Javascript
[03:03]2014DOTA2西雅图国际邀请赛 Alliance战队巡礼
2014/07/07 DOTA
简单谈谈python的反射机制
2016/06/28 Python
Python合并字典键值并去除重复元素的实例
2016/12/18 Python
深入了解Python iter() 方法的用法
2019/07/11 Python
基于python cut和qcut的用法及区别详解
2019/11/22 Python
Tensorflow累加的实现案例
2020/02/05 Python
解决python和pycharm安装gmpy2 出现ERROR的问题
2020/08/28 Python
丝芙兰波兰:Sephora.pl
2018/03/25 全球购物
全球领先的中国制造商品在线批发平台:DHgate
2020/01/28 全球购物
意大利奢侈品牌在线精品店:Jole.it
2020/11/23 全球购物
主题实践活动总结
2014/05/08 职场文书
小学标准化建设汇报材料
2014/08/16 职场文书
单位工作证明
2014/10/07 职场文书
2014年科技工作总结
2014/11/26 职场文书
幼儿园教研工作总结2015
2015/05/12 职场文书