图神经网络GNN算法

本文结合一个具体的无向图来对最简单的一种GNN进行推导。本文第一部分是数据介绍,第二部分为推导过程中需要用的变量的定义,第三部分是GNN的具体推导过程,最后一部分为自己对GNN的一些看法与总结。

Posted in Python onMay 11, 2022

前言

本文结合一个具体的无向图来对最简单的一种GNN进行推导。本文第一部分是数据介绍,第二部分为推导过程中需要用的变量的定义,第三部分是GNN的具体推导过程,最后一部分为自己对GNN的一些看法与总结。

1. 数据

利用networkx简单生成一个无向图:

# -*- coding: utf-8 -*-
"""
@Time : 2021/12/21 11:23
@Author :KI 
@File :gnn_basic.py
@Motto:Hungry And Humble

"""
import networkx as nx
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

G = nx.Graph()
node_features = [[2, 3], [4, 7], [3, 7], [4, 5], [5, 5]]
edges = [(1, 2), (1, 3), (2, 4), (2, 5), (1, 3), (3, 5), (3, 4)]
edge_features = [[1, 3], [4, 1], [1, 5], [5, 3], [5, 6], [5, 4], [4, 3]]
colors = []
edge_colors = []

# add nodes
for i in range(1, len(node_features) + 1):
    G.add_node(i, feature=str(i) + ':(' + str(node_features[i-1][0]) + ',' + str(node_features[i-1][1]) + ')')
    colors.append('#DCBB8A')

# add edges
for i in range(1, len(edge_features) + 1):
    G.add_edge(edges[i-1][0], edges[i-1][1], feature='(' + str(edge_features[i-1][0]) + ',' + str(edge_features[i-1][1]) + ')')
    edge_colors.append('#3CA9C4')

# draw
fig, ax = plt.subplots()

pos = nx.spring_layout(G)
nx.draw(G, pos=pos, node_size=2000, node_color=colors, edge_color='black')
node_labels = nx.get_node_attributes(G, 'feature')
nx.draw_networkx_labels(G, pos=pos, labels=node_labels, node_size=2000, node_color=colors, font_color='r', font_size=14)
edge_labels = nx.get_edge_attributes(G, 'feature')
nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels, font_size=14, font_color='#7E8877')

ax.set_facecolor('deepskyblue')
ax.axis('off')
fig.set_facecolor('deepskyblue')
plt.show()

如下所示:

图神经网络GNN算法


其中,每一个节点都有自己的一些特征,比如在社交网络中,每个节点(用户)有性别以及年龄等特征。

5个节点的特征向量依次为:

[[2, 3], [4, 7], [3, 7], [4, 5], [5, 5]]

同样,6条边的特征向量为:

[[1, 3], [4, 1], [1, 5], [5, 3], [5, 6], [5, 4], [4, 3]]

2. 变量定义

图神经网络GNN算法

特征向量实际上也就是节点或者边的标签,这个是图本身的属性,一直保持不变。

3. GNN算法

GNN算法的完整描述如下:Forward向前计算状态,Backward向后计算梯度,主函数通过向前和向后迭代调用来最小化损失。

图神经网络GNN算法


主函数中:

图神经网络GNN算法

上述描述只是一个总体的概述,可以略过先不看。

3.1 Forward

早期的GNN都是RecGNN,即循环GNN。这种类型的GNN基于信息传播机制: GNN通过不断交换邻域信息来更新节点状态,直到达到稳定均衡。节点的状态向量 x 由以下 f w ​函数来进行周期性更新:

图神经网络GNN算法

 

图神经网络GNN算法


解析上述公式:对于节点 n ,假设为节点1,更新其状态需要以下数据参与:

图神经网络GNN算法

这里的fw只是形式化的定义,不同的GNN有不同的定义,如随机稳态嵌入(SSE)中定义如下:

图神经网络GNN算法

由更新公式可知,当所有节点的状态都趋于稳定状态时,此时所有节点的状态向量都包含了其邻居节点和相连边的信息。

这与图嵌入有些类似:如果是节点嵌入,我们最终得到的是一个节点的向量表示,而这些向量是根据随机游走序列得到的,随机游走序列中又包括了节点的邻居信息, 因此节点的向量表示中包含了连接信息。

证明上述更新过程能够收敛需要用到不动点理论,这里简单描述下:

如果我们有以下更新公式:

图神经网络GNN算法

GNN的Foward描述如下:

图神经网络GNN算法


解释:

图神经网络GNN算法

3.2 Backward

在节点嵌入中,我们最终得到了每个节点的表征向量,此时我们就能利用这些向量来进行聚类、节点分类、链接预测等等。

GNN中类似,得到这些节点状态向量的最终形式不是我们的目的,我们的目的是利用这些节点状态向量来做一些实际的应用,比如节点标签预测。

因此,如果想要预测的话,我们就需要一个输出函数来对节点状态进行变换,得到我们要想要的东西:

图神经网络GNN算法


最容易想到的就是将节点状态向量经过一个前馈神经网络得到输出,也就是说 g w g_w gw​可以是一个FNN,同样的, f w f_w fw​也可以是一个FNN:

图神经网络GNN算法


我们利用 g w g_w gw​函数对节点 n n n收敛后的状态向量 x n x_n xn​以及其特征向量 l n l_n ln​进行变换,就能得到我们想要的输出,比如某一类别,某一具体的数值等等。

在BP算法中,我们有了输出后,就能算出损失,然后利用损失反向传播算出梯度,最后再利用梯度下降法对神经网络的参数进行更新。

对于某一节点的损失(比如回归)我们可以简单定义如下:

图神经网络GNN算法

图神经网络GNN算法


有了z(t)后,我们就能求导了:

图神经网络GNN算法

图神经网络GNN算法

z(t)的求解方法在Backward中有描述:

图神经网络GNN算法

图神经网络GNN算法

因此,在Backward中需要计算以下导数:

图神经网络GNN算法

4.总结与展望

本文所讲的GNN是最原始的GNN,此时的GNN存在着不少的问题,比如对不动点隐藏状态的更新比较低效。

由于CNN在CV领域的成功,许多重新定义图形数据卷积概念的方法被提了出来,图卷积神经网络ConvGNN也被提了出来,ConvGNN被分为两大类:频域方法(spectral-based method )和空间域方法(spatial-based method)。2009年,Micheli在继承了来自RecGNN的消息传递思想的同时,在架构上复合非递归层,首次解决了图的相互依赖问题。在过去的几年里还开发了许多替代GNN,包括GAE和STGNN。这些学习框架可以建立在RecGNN、ConvGNN或其他用于图形建模的神经架构上。

GNN是用于图数据的深度学习架构,它将端到端学习与归纳推理相结合,业界普遍认为其有望解决深度学习无法处理的因果推理、可解释性等一系列瓶颈问题,是未来3到5年的重点方向。

因此,不仅仅是GNN,图领域的相关研究都是比较有前景的,这方面的应用也十分广泛,比如推荐系统、计算机视觉、物理/化学(生命科学)、药物发现等等。

以上就是图神经网络GNN算法基本原理详解的详细内容!


Tags in this post...

Python 相关文章推荐
Python日期操作学习笔记
Oct 07 Python
python监控文件或目录变化
Jun 07 Python
Python黑魔法@property装饰器的使用技巧解析
Jun 16 Python
Python字符编码与函数的基本使用方法
Sep 30 Python
浅谈dataframe中更改列属性的方法
Jul 10 Python
基于python代码实现简易滤除数字的方法
Jul 17 Python
python3.4控制用户输入与输出的方法
Oct 17 Python
用Python实现二叉树、二叉树非递归遍历及绘制的例子
Aug 09 Python
python如何删除列为空的行
Jul 17 Python
Python中bisect的用法及示例详解
Jul 20 Python
浅析Python中字符串的intern机制
Oct 03 Python
Python中request的基本使用解决乱码问题
Apr 12 Python
python神经网络ResNet50模型
May 06 #Python
python和anaconda的区别
May 06 #Python
python神经网络Xception模型
May 06 #Python
Python使用永中文档转换服务
May 06 #Python
Python tensorflow卷积神经Inception V3网络结构
May 06 #Python
Python实现Matplotlib,Seaborn动态数据图
May 06 #Python
PYTHON InceptionV3模型的复现详解
You might like
php使用filter过滤器验证邮箱 ipv6地址 url验证
2013/12/25 PHP
Javascript new关键字的玄机 以及其它
2010/08/25 Javascript
myeclipse安装jQuery插件的方法
2011/03/29 Javascript
读jQuery之十二 删除事件核心方法
2011/07/31 Javascript
使用 js+正则表达式为关键词添加链接
2014/11/11 Javascript
Jquery中CSS选择器用法分析
2015/02/10 Javascript
跟我学习javascript的Date对象
2015/11/19 Javascript
js实现的简练高效拖拽功能示例
2016/12/21 Javascript
BootStrap 弹出层代码
2017/02/09 Javascript
Canvas实现放射线动画效果
2017/02/15 Javascript
从零学习node.js之模块规范(一)
2017/02/21 Javascript
详解react服务端渲染(同构)的方法
2017/09/21 Javascript
利用jQuery+localStorage实现一个简易的计时器示例代码
2017/12/25 jQuery
JavaScript使用math.js进行精确计算操作示例
2018/06/19 Javascript
element-ui循环显示radio控件信息的方法
2018/08/24 Javascript
微信小程序实现弹出层效果
2020/05/26 Javascript
微信小程序实现树莓派(raspberry pi)小车控制
2020/02/12 Javascript
[53:15]2018DOTA2亚洲邀请赛3月29日 小组赛A组 KG VS OG
2018/03/30 DOTA
python33 urllib2使用方法细节讲解
2013/12/03 Python
python根据京东商品url获取产品价格
2015/08/09 Python
python安装教程 Pycharm安装详细教程
2017/05/02 Python
Python数据结构与算法之完全树与最小堆实例
2017/12/13 Python
使用apidocJs快速生成在线文档的实例讲解
2018/02/07 Python
Python3操作YAML文件格式方法解析
2020/04/10 Python
使用pytorch实现论文中的unet网络
2020/06/24 Python
python实现excel公式格式化的示例代码
2020/12/23 Python
canvas如何绘制钟表的方法
2017/12/13 HTML / CSS
html5 canvas绘制网络字体的常用方法
2019/08/26 HTML / CSS
布鲁明戴尔百货店:Bloomingdale’s
2016/12/21 全球购物
可口可乐广告词
2014/03/20 职场文书
财产公证书格式
2014/04/10 职场文书
工作期间打牌检讨书范文
2014/11/20 职场文书
世界水日宣传活动总结
2015/02/09 职场文书
幼儿园开学温馨提示
2015/07/15 职场文书
python xlwt模块的使用解析
2021/04/13 Python
python 如何执行控制台命令与操作剪切板
2021/05/20 Python