图神经网络GNN算法

本文结合一个具体的无向图来对最简单的一种GNN进行推导。本文第一部分是数据介绍,第二部分为推导过程中需要用的变量的定义,第三部分是GNN的具体推导过程,最后一部分为自己对GNN的一些看法与总结。

Posted in Python onMay 11, 2022

前言

本文结合一个具体的无向图来对最简单的一种GNN进行推导。本文第一部分是数据介绍,第二部分为推导过程中需要用的变量的定义,第三部分是GNN的具体推导过程,最后一部分为自己对GNN的一些看法与总结。

1. 数据

利用networkx简单生成一个无向图:

# -*- coding: utf-8 -*-
"""
@Time : 2021/12/21 11:23
@Author :KI 
@File :gnn_basic.py
@Motto:Hungry And Humble

"""
import networkx as nx
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

G = nx.Graph()
node_features = [[2, 3], [4, 7], [3, 7], [4, 5], [5, 5]]
edges = [(1, 2), (1, 3), (2, 4), (2, 5), (1, 3), (3, 5), (3, 4)]
edge_features = [[1, 3], [4, 1], [1, 5], [5, 3], [5, 6], [5, 4], [4, 3]]
colors = []
edge_colors = []

# add nodes
for i in range(1, len(node_features) + 1):
    G.add_node(i, feature=str(i) + ':(' + str(node_features[i-1][0]) + ',' + str(node_features[i-1][1]) + ')')
    colors.append('#DCBB8A')

# add edges
for i in range(1, len(edge_features) + 1):
    G.add_edge(edges[i-1][0], edges[i-1][1], feature='(' + str(edge_features[i-1][0]) + ',' + str(edge_features[i-1][1]) + ')')
    edge_colors.append('#3CA9C4')

# draw
fig, ax = plt.subplots()

pos = nx.spring_layout(G)
nx.draw(G, pos=pos, node_size=2000, node_color=colors, edge_color='black')
node_labels = nx.get_node_attributes(G, 'feature')
nx.draw_networkx_labels(G, pos=pos, labels=node_labels, node_size=2000, node_color=colors, font_color='r', font_size=14)
edge_labels = nx.get_edge_attributes(G, 'feature')
nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels, font_size=14, font_color='#7E8877')

ax.set_facecolor('deepskyblue')
ax.axis('off')
fig.set_facecolor('deepskyblue')
plt.show()

如下所示:

图神经网络GNN算法


其中,每一个节点都有自己的一些特征,比如在社交网络中,每个节点(用户)有性别以及年龄等特征。

5个节点的特征向量依次为:

[[2, 3], [4, 7], [3, 7], [4, 5], [5, 5]]

同样,6条边的特征向量为:

[[1, 3], [4, 1], [1, 5], [5, 3], [5, 6], [5, 4], [4, 3]]

2. 变量定义

图神经网络GNN算法

特征向量实际上也就是节点或者边的标签,这个是图本身的属性,一直保持不变。

3. GNN算法

GNN算法的完整描述如下:Forward向前计算状态,Backward向后计算梯度,主函数通过向前和向后迭代调用来最小化损失。

图神经网络GNN算法


主函数中:

图神经网络GNN算法

上述描述只是一个总体的概述,可以略过先不看。

3.1 Forward

早期的GNN都是RecGNN,即循环GNN。这种类型的GNN基于信息传播机制: GNN通过不断交换邻域信息来更新节点状态,直到达到稳定均衡。节点的状态向量 x 由以下 f w ​函数来进行周期性更新:

图神经网络GNN算法

 

图神经网络GNN算法


解析上述公式:对于节点 n ,假设为节点1,更新其状态需要以下数据参与:

图神经网络GNN算法

这里的fw只是形式化的定义,不同的GNN有不同的定义,如随机稳态嵌入(SSE)中定义如下:

图神经网络GNN算法

由更新公式可知,当所有节点的状态都趋于稳定状态时,此时所有节点的状态向量都包含了其邻居节点和相连边的信息。

这与图嵌入有些类似:如果是节点嵌入,我们最终得到的是一个节点的向量表示,而这些向量是根据随机游走序列得到的,随机游走序列中又包括了节点的邻居信息, 因此节点的向量表示中包含了连接信息。

证明上述更新过程能够收敛需要用到不动点理论,这里简单描述下:

如果我们有以下更新公式:

图神经网络GNN算法

GNN的Foward描述如下:

图神经网络GNN算法


解释:

图神经网络GNN算法

3.2 Backward

在节点嵌入中,我们最终得到了每个节点的表征向量,此时我们就能利用这些向量来进行聚类、节点分类、链接预测等等。

GNN中类似,得到这些节点状态向量的最终形式不是我们的目的,我们的目的是利用这些节点状态向量来做一些实际的应用,比如节点标签预测。

因此,如果想要预测的话,我们就需要一个输出函数来对节点状态进行变换,得到我们要想要的东西:

图神经网络GNN算法


最容易想到的就是将节点状态向量经过一个前馈神经网络得到输出,也就是说 g w g_w gw​可以是一个FNN,同样的, f w f_w fw​也可以是一个FNN:

图神经网络GNN算法


我们利用 g w g_w gw​函数对节点 n n n收敛后的状态向量 x n x_n xn​以及其特征向量 l n l_n ln​进行变换,就能得到我们想要的输出,比如某一类别,某一具体的数值等等。

在BP算法中,我们有了输出后,就能算出损失,然后利用损失反向传播算出梯度,最后再利用梯度下降法对神经网络的参数进行更新。

对于某一节点的损失(比如回归)我们可以简单定义如下:

图神经网络GNN算法

图神经网络GNN算法


有了z(t)后,我们就能求导了:

图神经网络GNN算法

图神经网络GNN算法

z(t)的求解方法在Backward中有描述:

图神经网络GNN算法

图神经网络GNN算法

因此,在Backward中需要计算以下导数:

图神经网络GNN算法

4.总结与展望

本文所讲的GNN是最原始的GNN,此时的GNN存在着不少的问题,比如对不动点隐藏状态的更新比较低效。

由于CNN在CV领域的成功,许多重新定义图形数据卷积概念的方法被提了出来,图卷积神经网络ConvGNN也被提了出来,ConvGNN被分为两大类:频域方法(spectral-based method )和空间域方法(spatial-based method)。2009年,Micheli在继承了来自RecGNN的消息传递思想的同时,在架构上复合非递归层,首次解决了图的相互依赖问题。在过去的几年里还开发了许多替代GNN,包括GAE和STGNN。这些学习框架可以建立在RecGNN、ConvGNN或其他用于图形建模的神经架构上。

GNN是用于图数据的深度学习架构,它将端到端学习与归纳推理相结合,业界普遍认为其有望解决深度学习无法处理的因果推理、可解释性等一系列瓶颈问题,是未来3到5年的重点方向。

因此,不仅仅是GNN,图领域的相关研究都是比较有前景的,这方面的应用也十分广泛,比如推荐系统、计算机视觉、物理/化学(生命科学)、药物发现等等。

以上就是图神经网络GNN算法基本原理详解的详细内容!


Tags in this post...

Python 相关文章推荐
Python中的CURL PycURL使用例子
Jun 01 Python
python实现识别手写数字 python图像识别算法
Mar 23 Python
Python加载带有注释的Json文件实例
May 23 Python
python并发编程 Process对象的其他属性方法join方法详解
Aug 20 Python
PYTHON如何读取和写入EXCEL里面的数据
Oct 28 Python
Python中__repr__和__str__区别详解
Nov 07 Python
Pycharm中Python环境配置常见问题解析
Jan 16 Python
tensorflow自定义激活函数实例
Feb 04 Python
pyqt5 QlistView列表显示的实现示例
Mar 24 Python
Python爬虫实例——scrapy框架爬取拉勾网招聘信息
Jul 14 Python
Python实现列表索引批量删除的5种方法
Nov 16 Python
详解numpy1.19.4与python3.9版本冲突解决
Dec 15 Python
python神经网络ResNet50模型
May 06 #Python
python和anaconda的区别
May 06 #Python
python神经网络Xception模型
May 06 #Python
Python使用永中文档转换服务
May 06 #Python
Python tensorflow卷积神经Inception V3网络结构
May 06 #Python
Python实现Matplotlib,Seaborn动态数据图
May 06 #Python
PYTHON InceptionV3模型的复现详解
You might like
PHP中的串行化变量和序列化对象
2006/09/05 PHP
PHP 命令行参数详解及应用
2011/05/18 PHP
PHP中使用虚代理实现延迟加载技术
2014/11/05 PHP
PHP连接操作access数据库实例
2015/03/30 PHP
PHP查找与搜索数组元素方法总结
2015/06/12 PHP
PHP单例模式详细介绍
2015/07/01 PHP
在WordPress中实现评论头像的自定义默认和延迟加载
2015/11/24 PHP
JavaScript与C# Windows应用程序交互方法
2007/06/29 Javascript
JavaScript 常用函数库详解
2009/10/21 Javascript
JSON语法五大要素图文介绍
2012/12/04 Javascript
javascript打印输出json实例
2013/11/11 Javascript
jquery.uploadify插件在chrome浏览器频繁崩溃解决方法
2015/03/01 Javascript
js中通过getElementsByName访问name集合对象的方法
2016/10/31 Javascript
使用jsonp实现跨域获取数据实例讲解
2016/12/25 Javascript
Javascript设计模式之装饰者模式详解篇
2017/01/17 Javascript
Javascript继承机制详解
2017/05/30 Javascript
javascript帧动画(实例讲解)
2017/09/02 Javascript
requireJS模块化实现返回顶部功能的方法详解
2017/10/16 Javascript
Vue CL3 配置路径别名详解
2019/05/30 Javascript
vue keep-alive实现多组件嵌套中个别组件存活不销毁的操作
2020/10/30 Javascript
Python 专题五 列表基础知识(二维list排序、获取下标和处理txt文本实例)
2017/03/20 Python
详解Python开发中如何使用Hook技巧
2017/11/01 Python
Python将多个excel文件合并为一个文件
2018/01/03 Python
对python sklearn one-hot编码详解
2018/07/10 Python
深入浅析python 协程与go协程的区别
2019/05/09 Python
Python filter过滤器原理及实例应用
2020/08/18 Python
python实现简单的tcp 文件下载
2020/09/16 Python
HTML5实现预览本地图片
2016/02/17 HTML / CSS
行政人员岗位职责
2013/12/08 职场文书
十佳班主任事迹材料
2014/01/18 职场文书
英语专业毕业生求职信
2014/05/24 职场文书
2016入党心得体会范文
2016/01/06 职场文书
PHP解决高并发问题
2021/04/01 PHP
vscode中使用npm安装babel的方法
2021/08/02 Javascript
CSS3实现360度循环旋转功能
2022/02/12 HTML / CSS
Hive HQL支持2种查询语句风格
2022/06/25 数据库