keras 实现轻量级网络ShuffleNet教程


Posted in Python onJune 19, 2020

ShuffleNet是由旷世发表的一个计算效率极高的CNN架构,它是专门为计算能力非常有限的移动设备(例如,10-150 MFLOPs)而设计的。该结构利用组卷积和信道混洗两种新的运算方法,在保证计算精度的同时,大大降低了计算成本。ImageNet分类和MS COCO对象检测实验表明,在40 MFLOPs的计算预算下,ShuffleNet的性能优于其他结构,例如,在ImageNet分类任务上,ShuffleNet的top-1 error 7.8%比最近的MobileNet低。在基于arm的移动设备上,ShuffleNet比AlexNet实际加速了13倍,同时保持了相当的准确性。

Paper:ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile

Github:https://github.com/zjn-ai/ShuffleNet-keras

网络架构

组卷积

组卷积其实早在AlexNet中就用过了,当时因为GPU的显存不足因而利用组卷积分配到两个GPU上训练。简单来讲,组卷积就是将输入特征图按照通道方向均分成多个大小一致的特征图,如下图所示左面是输入特征图右面是均分后的特征图,然后对得到的每一个特征图进行正常的卷积操作,最后将输出特征图按照通道方向拼接起来就可以了。

keras 实现轻量级网络ShuffleNet教程

目前很多框架都支持组卷积,但是tensorflow真的不知道在想什么,到现在还是不支持组卷积,只能自己写,因此效率肯定不及其他框架原生支持的方法。组卷积层的代码编写思路就与上面所说的原理完全一致,代码如下。

def _group_conv(x, filters, kernel, stride, groups):
 """
 Group convolution
 # Arguments
  x: Tensor, input tensor of with `channels_last` or 'channels_first' data format
  filters: Integer, number of output channels
  kernel: An integer or tuple/list of 2 integers, specifying the
   width and height of the 2D convolution window.
  strides: An integer or tuple/list of 2 integers,
   specifying the strides of the convolution along the width and height.
   Can be a single integer to specify the same value for
   all spatial dimensions.
  groups: Integer, number of groups per channel
  
 # Returns
  Output tensor
 """
 channel_axis = 1 if K.image_data_format() == 'channels_first' else -1
 in_channels = K.int_shape(x)[channel_axis]
 
 # number of input channels per group
 nb_ig = in_channels // groups
 # number of output channels per group
 nb_og = filters // groups
 
 gc_list = []
 # Determine whether the number of filters is divisible by the number of groups
 assert filters % groups == 0
 
 for i in range(groups):
  if channel_axis == -1:
   x_group = Lambda(lambda z: z[:, :, :, i * nb_ig: (i + 1) * nb_ig])(x)
  else:
   x_group = Lambda(lambda z: z[:, i * nb_ig: (i + 1) * nb_ig, :, :])(x)
  gc_list.append(Conv2D(filters=nb_og, kernel_size=kernel, strides=stride, 
        padding='same', use_bias=False)(x_group))
  
 return Concatenate(axis=channel_axis)(gc_list)

通道混洗

通道混洗是这篇paper的重点,尽管组卷积大量减少了计算量和参数,但是通道之间的信息交流也受到了限制因而模型精度肯定会受到影响,因此作者提出通道混洗,在不增加参数量和计算量的基础上加强通道之间的信息交流,如下图所示。

keras 实现轻量级网络ShuffleNet教程

通道混洗层的代码实现很巧妙参考了别人的实现方法。通过下面的代码说明,d代表特征图的通道序号,x是经过通道混洗后的通道顺序。

>>> d = np.array([0,1,2,3,4,5,6,7,8]) 
>>> x = np.reshape(d, (3,3)) 
>>> x = np.transpose(x, [1,0]) # 转置
>>> x = np.reshape(x, (9,)) # 平铺
'[0 1 2 3 4 5 6 7 8] --> [0 3 6 1 4 7 2 5 8]'

利用keras后端实现代码:

def _channel_shuffle(x, groups):
 """
 Channel shuffle layer
 
 # Arguments
  x: Tensor, input tensor of with `channels_last` or 'channels_first' data format
  groups: Integer, number of groups per channel
  
 # Returns
  Shuffled tensor
 """
 
 if K.image_data_format() == 'channels_last':
  height, width, in_channels = K.int_shape(x)[1:]
  channels_per_group = in_channels // groups
  pre_shape = [-1, height, width, groups, channels_per_group]
  dim = (0, 1, 2, 4, 3)
  later_shape = [-1, height, width, in_channels]
 else:
  in_channels, height, width = K.int_shape(x)[1:]
  channels_per_group = in_channels // groups
  pre_shape = [-1, groups, channels_per_group, height, width]
  dim = (0, 2, 1, 3, 4)
  later_shape = [-1, in_channels, height, width]
 
 x = Lambda(lambda z: K.reshape(z, pre_shape))(x)
 x = Lambda(lambda z: K.permute_dimensions(z, dim))(x) 
 x = Lambda(lambda z: K.reshape(z, later_shape))(x)
 
 return x

ShuffleNet Unit

ShuffleNet的主要构成单元。下图中,a图为深度可分离卷积的基本架构,b图为1步长时用的单元,c图为2步长时用的单元。

keras 实现轻量级网络ShuffleNet教程

ShuffleNet架构

注意,对于第二阶段(Stage2),作者没有在第一个1×1卷积上应用组卷积,因为输入通道的数量相对较少。

keras 实现轻量级网络ShuffleNet教程

环境

Python 3.6

Tensorlow 1.13.1

Keras 2.2.4

实现

支持channel first或channel last

# -*- coding: utf-8 -*-
"""
Created on Thu Apr 25 18:26:41 2019
@author: zjn
"""
import numpy as np
from keras.callbacks import LearningRateScheduler
from keras.models import Model
from keras.layers import Input, Conv2D, Dropout, Dense, GlobalAveragePooling2D, Concatenate, AveragePooling2D
from keras.layers import Activation, BatchNormalization, add, Reshape, ReLU, DepthwiseConv2D, MaxPooling2D, Lambda
from keras.utils.vis_utils import plot_model
from keras import backend as K
from keras.optimizers import SGD
 
def _group_conv(x, filters, kernel, stride, groups):
 """
 Group convolution
 
 # Arguments
  x: Tensor, input tensor of with `channels_last` or 'channels_first' data format
  filters: Integer, number of output channels
  kernel: An integer or tuple/list of 2 integers, specifying the
   width and height of the 2D convolution window.
  strides: An integer or tuple/list of 2 integers,
   specifying the strides of the convolution along the width and height.
   Can be a single integer to specify the same value for
   all spatial dimensions.
  groups: Integer, number of groups per channel
  
 # Returns
  Output tensor
 """
 
 channel_axis = 1 if K.image_data_format() == 'channels_first' else -1
 in_channels = K.int_shape(x)[channel_axis]
 
 # number of input channels per group
 nb_ig = in_channels // groups
 # number of output channels per group
 nb_og = filters // groups
 
 gc_list = []
 # Determine whether the number of filters is divisible by the number of groups
 assert filters % groups == 0
 
 for i in range(groups):
  if channel_axis == -1:
   x_group = Lambda(lambda z: z[:, :, :, i * nb_ig: (i + 1) * nb_ig])(x)
  else:
   x_group = Lambda(lambda z: z[:, i * nb_ig: (i + 1) * nb_ig, :, :])(x)
  gc_list.append(Conv2D(filters=nb_og, kernel_size=kernel, strides=stride, 
        padding='same', use_bias=False)(x_group))
  
 return Concatenate(axis=channel_axis)(gc_list)
def _channel_shuffle(x, groups):
 """
 Channel shuffle layer
 
 # Arguments
  x: Tensor, input tensor of with `channels_last` or 'channels_first' data format
  groups: Integer, number of groups per channel
  
 # Returns
  Shuffled tensor
 """
 if K.image_data_format() == 'channels_last':
  height, width, in_channels = K.int_shape(x)[1:]
  channels_per_group = in_channels // groups
  pre_shape = [-1, height, width, groups, channels_per_group]
  dim = (0, 1, 2, 4, 3)
  later_shape = [-1, height, width, in_channels]
 else:
  in_channels, height, width = K.int_shape(x)[1:]
  channels_per_group = in_channels // groups
  pre_shape = [-1, groups, channels_per_group, height, width]
  dim = (0, 2, 1, 3, 4)
  later_shape = [-1, in_channels, height, width]
 
 x = Lambda(lambda z: K.reshape(z, pre_shape))(x)
 x = Lambda(lambda z: K.permute_dimensions(z, dim))(x) 
 x = Lambda(lambda z: K.reshape(z, later_shape))(x)
 
 return x
 
def _shufflenet_unit(inputs, filters, kernel, stride, groups, stage, bottleneck_ratio=0.25):
 """
 ShuffleNet unit
 
 # Arguments
  inputs: Tensor, input tensor of with `channels_last` or 'channels_first' data format
  filters: Integer, number of output channels
  kernel: An integer or tuple/list of 2 integers, specifying the
   width and height of the 2D convolution window.
  strides: An integer or tuple/list of 2 integers,
   specifying the strides of the convolution along the width and height.
   Can be a single integer to specify the same value for
   all spatial dimensions.
  groups: Integer, number of groups per channel
  stage: Integer, stage number of ShuffleNet
  bottleneck_channels: Float, bottleneck ratio implies the ratio of bottleneck channels to output channels
   
 # Returns
  Output tensor
  
 # Note
  For Stage 2, we(authors of shufflenet) do not apply group convolution on the first pointwise layer 
  because the number of input channels is relatively small.
 """
 channel_axis = 1 if K.image_data_format() == 'channels_first' else -1
 in_channels = K.int_shape(inputs)[channel_axis]
 bottleneck_channels = int(filters * bottleneck_ratio)
 
 if stage == 2:
  x = Conv2D(filters=bottleneck_channels, kernel_size=kernel, strides=1,
     padding='same', use_bias=False)(inputs)
 else:
  x = _group_conv(inputs, bottleneck_channels, (1, 1), 1, groups)
 x = BatchNormalization(axis=channel_axis)(x)
 x = ReLU()(x)
 
 x = _channel_shuffle(x, groups)
 x = DepthwiseConv2D(kernel_size=kernel, strides=stride, depth_multiplier=1, 
      padding='same', use_bias=False)(x)
 x = BatchNormalization(axis=channel_axis)(x)
  
 if stride == 2:
  x = _group_conv(x, filters - in_channels, (1, 1), 1, groups)
  x = BatchNormalization(axis=channel_axis)(x)
  avg = AveragePooling2D(pool_size=(3, 3), strides=2, padding='same')(inputs)
  x = Concatenate(axis=channel_axis)([x, avg])
 else:
  x = _group_conv(x, filters, (1, 1), 1, groups)
  x = BatchNormalization(axis=channel_axis)(x)
  x = add([x, inputs])
 return x
 
def _stage(x, filters, kernel, groups, repeat, stage):
 """
 Stage of ShuffleNet
 
 # Arguments
  x: Tensor, input tensor of with `channels_last` or 'channels_first' data format
  filters: Integer, number of output channels
  kernel: An integer or tuple/list of 2 integers, specifying the
   width and height of the 2D convolution window.
  strides: An integer or tuple/list of 2 integers,
   specifying the strides of the convolution along the width and height.
   Can be a single integer to specify the same value for
   all spatial dimensions.
  groups: Integer, number of groups per channel
  repeat: Integer, total number of repetitions for a shuffle unit in every stage
  stage: Integer, stage number of ShuffleNet
  
 # Returns
  Output tensor
 """
 x = _shufflenet_unit(x, filters, kernel, 2, groups, stage)
 
 for i in range(1, repeat):
  x = _shufflenet_unit(x, filters, kernel, 1, groups, stage)
 return x
 
def ShuffleNet(input_shape, classes):
 """
 ShuffleNet architectures
 
 # Arguments
  input_shape: An integer or tuple/list of 3 integers, shape
   of input tensor
  k: Integer, number of classes to predict
  
 # Returns
  A keras model
 """
 inputs = Input(shape=input_shape)
 
 x = Conv2D(24, (3, 3), strides=2, padding='same', use_bias=True, activation='relu')(inputs)
 x = MaxPooling2D(pool_size=(3, 3), strides=2, padding='same')(x)
 
 x = _stage(x, filters=384, kernel=(3, 3), groups=8, repeat=4, stage=2)
 x = _stage(x, filters=768, kernel=(3, 3), groups=8, repeat=8, stage=3)
 x = _stage(x, filters=1536, kernel=(3, 3), groups=8, repeat=4, stage=4)
 
 x = GlobalAveragePooling2D()(x)
 
 x = Dense(classes)(x)
 predicts = Activation('softmax')(x)
 model = Model(inputs, predicts)
 return model
 
if __name__ == '__main__':
 model = ShuffleNet((224, 224, 3), 1000)
 #plot_model(model, to_file='ShuffleNet.png', show_shapes=True)

以上这篇keras 实现轻量级网络ShuffleNet教程就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python处理图片之PIL模块简单使用方法
May 11 Python
Python中Random和Math模块学习笔记
May 18 Python
在Ubuntu系统下安装使用Python的GUI工具wxPython
Feb 18 Python
Python爬取三国演义的实现方法
Sep 12 Python
Python实现的人工神经网络算法示例【基于反向传播算法】
Nov 11 Python
python生成不重复随机数和对list乱序的解决方法
Apr 09 Python
Python实现的爬虫刷回复功能示例
Jun 07 Python
Python 中包/模块的 `import` 操作代码
Apr 22 Python
OpenCV3.0+Python3.6实现特定颜色的物体追踪
Jul 23 Python
python GUI库图形界面开发之PyQt5控件数据拖曳Drag与Drop详细使用方法与实例
Feb 27 Python
基于Django OneToOneField和ForeignKey的区别详解
Mar 30 Python
Python中Numpy和Matplotlib的基本使用指南
Nov 02 Python
Python爬虫实现HTTP网络请求多种实现方式
Jun 19 #Python
Keras设置以及获取权重的实现
Jun 19 #Python
Python包和模块的分发详细介绍
Jun 19 #Python
浅谈Keras中shuffle和validation_split的顺序
Jun 19 #Python
Python爬虫headers处理及网络超时问题解决方案
Jun 19 #Python
sklearn和keras的数据切分与交叉验证的实例详解
Jun 19 #Python
Python虚拟环境的创建和包下载过程分析
Jun 19 #Python
You might like
用PHP ob_start()控制浏览器cache、生成html实现代码
2010/02/16 PHP
php垃圾代码优化操作代码
2010/08/05 PHP
JavaScript 无符号右移赋值操作
2009/04/17 Javascript
用JQUERY增删元素的代码
2012/02/14 Javascript
打豆豆小游戏 用javascript编写的[打豆豆]小游戏
2013/01/08 Javascript
如何通过javascript操作web控件的自定义属性
2013/11/25 Javascript
常用的JavaScript验证正则表达式汇总
2013/11/26 Javascript
JavaScript中的undefined学习总结
2013/11/30 Javascript
nodejs 实现模拟form表单上传文件
2014/07/14 NodeJs
JQuery和HTML5 Canvas实现弹幕效果
2017/01/04 Javascript
jQuery层级选择器实例代码
2017/02/06 Javascript
BootStrap 页签切换失效的解决方法
2017/08/17 Javascript
es6学习之解构时应该注意的点
2017/08/29 Javascript
原生JS实现小小的音乐播放器
2017/10/16 Javascript
AngularJS标签页tab选项卡切换功能经典实例详解
2018/05/16 Javascript
微信小程序之下拉列表实现方法解析(附完整源码)
2019/08/23 Javascript
ES6学习笔记之字符串、数组、对象、函数新增知识点实例分析
2020/01/22 Javascript
pyramid配置session的方法教程
2013/11/27 Python
Python程序设计入门(5)类的使用简介
2014/06/16 Python
python编程线性回归代码示例
2017/12/07 Python
使用Python读取大文件的方法
2018/02/11 Python
解决python3捕获cx_oracle抛出的异常错误问题
2018/10/18 Python
对matplotlib改变colorbar位置和方向的方法详解
2018/12/13 Python
python使用PIL实现多张图片垂直合并
2019/01/15 Python
python TF-IDF算法实现文本关键词提取
2019/05/29 Python
centos7中安装python3.6.4的教程
2019/12/11 Python
Python模块的制作方法实例分析
2019/12/21 Python
如何定义TensorFlow输入节点
2020/01/23 Python
CSS3中的@keyframes关键帧动画的选择器绑定
2016/06/13 HTML / CSS
L’urv官网:精品女性运动服品牌
2019/07/07 全球购物
意大利自行车商店:Cingolani Bike Shop
2019/09/03 全球购物
毕业生造价工程师求职信
2013/10/17 职场文书
《理想》教学反思
2014/02/17 职场文书
2014新课程改革心得体会
2014/03/10 职场文书
新闻工作者先进事迹
2014/05/26 职场文书
《文化苦旅》读后感:阅读,让人诗意地栖居在大地上
2019/12/24 职场文书