python 画条形图(柱状图)实例


Posted in Python onApril 24, 2020

条形图(bar chart),也称为柱状图,是一种以长方形的长度为变量的统计图表,长方形的长度与它所对应的变量数值呈一定比例。

1. 竖放条形图

画条形图要用到 pyplot 中的 bar 函数,该函数的基本语法为:

bar(x, height, [width], **kwargs)

x 数组,每个条形的横坐标
height 个数或一个数组,条形的高度
[width] 可选参数,一个数或一个数组,条形的宽度,默认为 0.8
**kwargs 不定长的关键字参数,用字典形式设置条形图的其他属性

**kwargs 中常设置的参数包括图形标签 label,颜色标签 color,不透明度 alpha 等。

假设某项针对男女大学生购买饮用水爱好的调查结果如下表:

碳酸饮料 6 9
绿茶 7 4
矿泉水 6 4
其他 2 6
果汁 1 5
总计 22 28

画出男生饮用水情况的直方图,代码如下:

import matplotlib.pyplot as plt

# 这两行代码解决 plt 中文显示的问题
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False

waters = ('碳酸饮料', '绿茶', '矿泉水', '果汁', '其他')
buy_number = [6, 7, 6, 1, 2]

plt.bar(waters, buy_number)
plt.title('男性购买饮用水情况的调查结果')

plt.show()

图形:

python 画条形图(柱状图)实例

2. 横放条形图

若要生成横的条形图,则可以使用 barh 函数,其语法与 bar 函数非常类似。

bar(x, width, [height], **kwargs)

y 数组,每个条形的纵坐标
width 一个数或一个数组,条形的宽度
[height] 可选参数,一个数或一个数组,条形的高度,默认为 0.8
**kwargs 不定长的关键字参数,用字典形式设置条形图的其他属性

代码:

import matplotlib.pyplot as plt

# 这两行代码解决 plt 中文显示的问题
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False

waters = ('碳酸饮料', '绿茶', '矿泉水', '果汁', '其他')
buy_number = [6, 7, 6, 1, 2]

plt.barh(waters, buy_number) # 横放条形图函数 barh
plt.title('男性购买饮用水情况的调查结果')

plt.show()

python 画条形图(柱状图)实例

3. 并列条形图

若要将男生与女生的调查情况画出两个条形图一块显示,则可以使用 bar 或 barh 函数两次,并调整 bar 或 barh 函数的条形图位置坐标以及相应刻度,使得两组条形图能够并排显示。

import matplotlib.pyplot as plt
import numpy as np

# 这两行代码解决 plt 中文显示的问题
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False

# 输入统计数据
waters = ('碳酸饮料', '绿茶', '矿泉水', '果汁', '其他')
buy_number_male = [6, 7, 6, 1, 2]
buy_number_female = [9, 4, 4, 5, 6]

bar_width = 0.3 # 条形宽度
index_male = np.arange(len(waters)) # 男生条形图的横坐标
index_female = index_male + bar_width # 女生条形图的横坐标

# 使用两次 bar 函数画出两组条形图
plt.bar(index_male, height=buy_number_male, width=bar_width, color='b', label='男性')
plt.bar(index_female, height=buy_number_female, width=bar_width, color='g', label='女性')

plt.legend() # 显示图例
plt.xticks(index_male + bar_width/2, waters) # 让横坐标轴刻度显示 waters 里的饮用水, index_male + bar_width/2 为横坐标轴刻度的位置
plt.ylabel('购买量') # 纵坐标轴标题
plt.title('购买饮用水情况的调查结果') # 图形标题

plt.show()

python 画条形图(柱状图)实例

补充知识:Python 条形图与直方图有非常大的区别

区别:

首先,条形图是用条形的长度表示各类别频数的多少,其宽度(表示类别)则是固定的;

直方图是用面积表示各组频数的多少,矩形的高度表示每一组的频数或频率,宽度则表示各组的组距,因此其高度与宽度均有意义。

其次,由于分组数据具有连续性,直方图的各矩形通常是连续排列,而条形图则是分开排列。

最后,条形图主要用于展示分类数据,而直方图则主要用于展示数据型数据,我们初中学的就是条形统计图,很显然有没有当初那种感觉?(身高-年龄 条形统计图)在坐标上画出每个年龄对应的频数。这就是我们研究数据分布最喜欢用的。如果还是有点蒙,下面相同数据对比一下这两种图像你就会明白!

数据:

年龄 0 1 2 3 4 5 6 7 8 9 10 总数
人数 3 6 7 11 13 18 15 11 7 5 4 100
条形统计图(注重每类多少个):

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
plt.rcParams['font.sans-serif']=['SimHei'] #正常显示中文
plt.rcParams['axes.unicode_minus']=False #正常显示负号
 
# d=pd.read_excel('E:\Python\projects\data\data100.xlsx',header=None)
# d=d[0]
# d=list(d)
 
ages=range(11)
count=[3,6,7,11,13,18,15,11,7,5,4]
plt.bar(ages,count, label='graph 1')
# params
# x: 条形图x轴
# y:条形图的高度
# width:条形图的宽度 默认是0.8
# bottom:条形底部的y坐标值 默认是0
# align:center / edge 条形图是否以x轴坐标为中心点或者是以x轴坐标为边缘
plt.legend()
plt.xlabel('ages')
plt.ylabel('count')
plt.title(u'测试例子——条形图')
 
for i in range(11):
  plt.text(i,count[i]+0.1,"%s"%count[i],va='center')
 
plt.show()

python 画条形图(柱状图)实例

直方图:

import matplotlib.pyplot as plt
import matplotlib.mlab as mlab
import numpy as np
import pandas as pd
plt.rcParams['font.sans-serif']=['SimHei'] #正常显示中文
plt.rcParams['axes.unicode_minus']=False #正常显示负号
# d=np.random.normal(0,1,100)
d=pd.read_excel('E:\Python\projects\data\data100.xlsx',header=None)
d=d[0]
d=list(d)
print(d)
n, bins, patches = plt.hist(x=d, bins=11, color='#0504aa',
        alpha=0.8, rwidth=0.6) #alpha 是颜色深度 rwidth 条形宽度,bins条形箱的数目
 
plt.grid(axis='y', alpha=0.4) #alpha 网格颜色深度
plt.xlabel('age')
plt.ylabel('count')
plt.title('100个样本分布如下')
plt.text(20, 40, r'$\mu=0, sigma=1$')#前面是坐标,写字
# plt.ylim(19) #设置y的范围
 
plt.show()

python 画条形图(柱状图)实例

对比两个图就能知道,条形图将类别对的死死的,但是直方图就用间隔来划分每一柱多少,虽然大体相差不大,但是对于数据研究那影响可大也可小。总之了解了区别才能避免不必要的犯错。

以上这篇python 画条形图(柱状图)实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Pycharm学习教程(4) Python解释器的相关配置
May 03 Python
详解Python中 sys.argv[]的用法简明解释
Dec 20 Python
python学习笔记--将python源文件打包成exe文件(pyinstaller)
May 26 Python
PyQt5内嵌浏览器注入JavaScript脚本实现自动化操作的代码实例
Feb 13 Python
python实现五子棋小程序
Jun 18 Python
pytorch获取vgg16-feature层输出的例子
Aug 20 Python
python网络编程socket实现服务端、客户端操作详解
Mar 24 Python
python实现最短路径的实例方法
Jul 19 Python
Python logging模块原理解析及应用
Aug 13 Python
python list等分并从等分的子集中随机选取一个数
Nov 16 Python
python OpenCV学习笔记
Mar 31 Python
Django模型层实现多表关系创建和多表操作
Jul 21 Python
python模拟哔哩哔哩滑块登入验证的实现
Apr 24 #Python
200行python代码实现贪吃蛇游戏
Apr 24 #Python
python Canny边缘检测算法的实现
Apr 24 #Python
python实现文字版扫雷
Apr 24 #Python
离线状态下在jupyter notebook中使用plotly实例
Apr 24 #Python
python3中sys.argv的实例用法
Apr 24 #Python
VScode连接远程服务器上的jupyter notebook的实现
Apr 23 #Python
You might like
一些星际专用术语解释
2020/03/04 星际争霸
Smarty+QUICKFORM小小演示
2007/02/25 PHP
完美解决PHP中文乱码
2009/11/26 PHP
浅析php中如何在有限的内存中读取大文件
2013/07/02 PHP
LAMP环境使用Composer安装Laravel的方法
2017/03/25 PHP
基于jQuery的仿flash的广告轮播代码
2010/11/04 Javascript
javascript检测浏览器flash版本的实现代码
2011/12/06 Javascript
document.all的一个比较完整的总结及案例
2013/01/31 Javascript
深入理解Javascript中this的作用域
2014/08/12 Javascript
jQuery oLoader实现的加载图片和页面效果
2015/03/14 Javascript
常用的Javascript设计模式小结
2015/12/09 Javascript
探讨JavaScript语句的执行过程
2016/01/28 Javascript
Jquery跨浏览器文本复制插件Zero Clipboard的使用方法
2016/02/28 Javascript
详解nodejs微信公众号开发——3.封装消息响应模块
2017/04/10 NodeJs
nodeJS实现简单网页爬虫功能的实例(分享)
2017/06/08 NodeJs
node实现基于token的身份验证
2018/04/09 Javascript
Vue+Node服务器查询Mongo数据库及页面数据传递操作实例分析
2019/12/20 Javascript
webpack4从0搭建组件库的实现
2020/11/29 Javascript
python使用calendar输出指定年份全年日历的方法
2015/04/04 Python
Python中几种操作字符串的方法的介绍
2015/04/09 Python
Python基于OpenCV实现视频的人脸检测
2018/01/23 Python
python+PyQT实现系统桌面时钟
2020/06/16 Python
Python装饰器的应用场景代码总结
2020/04/10 Python
jupyter notebook快速入门及使用详解
2020/11/13 Python
利用python制作拼图小游戏的全过程
2020/12/04 Python
CSS3与动画有关的属性transition、animation、transform对比(史上最全版)
2017/08/18 HTML / CSS
利用 CSS3 实现的无缝轮播功能代码
2017/09/25 HTML / CSS
澳大利亚最大的网上油画销售画廊:Direct Art Australia
2018/04/15 全球购物
中药学自荐信
2014/06/15 职场文书
公司离职证明标准范本
2014/10/05 职场文书
行政执法作风整顿剖析材料
2014/10/11 职场文书
单位婚育证明范本
2014/11/21 职场文书
九寨沟导游词
2015/02/02 职场文书
干部考核工作总结
2015/08/12 职场文书
前端学习——JavaScript原生实现购物车案例
2021/03/31 Javascript
剖析后OpLog订阅MongoDB的数据变更就没那么难了
2022/02/24 MongoDB