keras在构建LSTM模型时对变长序列的处理操作


Posted in Python onJune 29, 2020

我就废话不多说了,大家还是直接看代码吧~

print(np.shape(X))#(1920, 45, 20)
X=sequence.pad_sequences(X, maxlen=100, padding='post')
print(np.shape(X))#(1920, 100, 20)

model = Sequential()
model.add(Masking(mask_value=0,input_shape=(100,20)))
model.add(LSTM(128,dropout_W=0.5,dropout_U=0.5))
model.add(Dense(13,activation='softmax'))
model.compile(loss='categorical_crossentropy',
       optimizer='adam',
       metrics=['accuracy'])

# 用于保存验证集误差最小的参数,当验证集误差减少时,保存下来
checkpointer = ModelCheckpoint(filepath="keras_rnn.hdf5", verbose=1, save_best_only=True, )
history = LossHistory()
result = model.fit(X, Y, batch_size=10,
          nb_epoch=500, verbose=1, validation_data=(testX, testY),
          callbacks=[checkpointer, history])

model.save('keras_rnn_epochend.hdf5')

补充知识:RNN(LSTM)数据形式及Padding操作处理变长时序序列dynamic_rnn

Summary

RNN

样本一样,计算的状态值和输出结构一致,也即是说只要当前时刻的输入值也前一状态值一样,那么其当前状态值和当前输出结果一致,因为在当前这一轮训练中权重参数和偏置均未更新

RNN的最终状态值与最后一个时刻的输出值一致

输入数据要求格式为,shape=(batch_size, step_time_size, input_size),那么,state的shape=(batch_size, state_size);output的shape=(batch_size, step_time_size, state_size),并且最后一个有效输出(有效序列长度,不包括padding的部分)与状态值会一样

LSTM

LSTM与RNN基本一致,不同在于其状态有两个c_state和h_state,它们的shape一样,输出值output的最后一个有效输出与h_state一致

用变长RNN训练,要求其输入格式仍然要求为shape=(batch_size, step_time_size, input_size),但可指定每一个批次中各个样本的有效序列长度,这样在有效长度内其状态值和输出值原理不变,但超过有效长度的部分的状态值将不会发生改变,而输出值都将是shape=(state_size,)的零向量(注:RNN也是这个原理)

需要说明的是,不是因为无效序列长度部分全padding为0而引起输出全为0,状态不变,因为输出值和状态值得计算不仅依赖当前时刻的输入值,也依赖于上一时刻的状态值。其内部原理是利用一个mask matrix矩阵标记有效部分和无效部分,这样在无效部分就不用计算了,也就是说,这一部分不会造成反向传播时对参数的更新。当然,如果padding不是零,那么padding的这部分输出和状态同样与padding为零的结果是一样的

'''
#样本数据为(batch_size,time_step_size, input_size[embedding_size])的形式,其中samples=4,timesteps=3,features=3,其中第二个、第四个样本是只有一个时间步长和二个时间步长的,这里自动补零
'''
import pandas as pd
import numpy as np
import tensorflow as tf

train_X = np.array([[[0, 1, 2], [9, 8, 7], [3,6,8]], 
          [[3, 4, 5], [0, 10, 110], [0,0,0]], 
          [[6, 7, 8], [6, 5, 4], [1,7,4]], 
          [[9, 0, 1], [3, 7, 4], [0,0,0]],
          [[9, 0, 1], [3, 3, 4], [0,0,0]]
          ])
          
sequence_length = [3, 1, 3, 2, 2]

train_X.shape, train_X[:,2:3,:].reshape(5, 3)
tf.reset_default_graph()

x = tf.placeholder(tf.float32, shape=(None, 3, 3)) # 输入数据只需能够迭代并符合要求shape即可,list也行,shape不指定表示没有shape约束,任意shape均可
rnn_cell = tf.nn.rnn_cell.BasicRNNCell(num_units=6) # state_size[hidden_size]
lstm_cell = tf.nn.rnn_cell.BasicLSTMCell(num_units=6) # state_size[hidden_size]
outputs1, state1 = tf.nn.dynamic_rnn(rnn_cell, x, dtype=tf.float32, sequence_length=sequence_length)
outputs2, state2 = tf.nn.dynamic_rnn(lstm_cell, x, dtype=tf.float32, sequence_length=sequence_length)

with tf.Session() as sess:
  sess.run(tf.global_variables_initializer()) # 初始化rnn_cell中参数变量
  outputs1, state1 = sess.run((outputs1, state1), feed_dict={x: train_X})
  outputs2, state2 = sess.run([outputs2, state2], feed_dict={x: train_X})
  print(outputs1.shape, state1.shape) # (4, 3, 5)->(batch_size, time_step_size, state_size), (4, 5)->(batch_size, state_size)
  print(outputs2.shape) # state2为LSTMStateTuple(c_state, h_state)
  print("---------output1<rnn>state1-----------")
  print(outputs1) # 可以看出output1的最后一个时刻的输出即为state1, 即output1[:,-1,:]与state1相等
  print(state1)
  print(np.all(outputs1[:,-1,:] == state1))
  print("---------output2<lstm>state2-----------")
  print(outputs2) # 可以看出output2的最后一个时刻的输出即为LSTMStateTuple中的h
  print(state2)
  print(np.all(outputs2[:,-1,:] == state2[1]))

再来怼怼dynamic_rnn中数据序列长度tricks

keras在构建LSTM模型时对变长序列的处理操作

思路样例代码

from collections import Counter
import numpy as np

origin_data = np.array([[1, 2, 3],
            [3, 0, 2],
            [1, 1, 4],
            [2, 1, 2],
            [0, 1, 1],
            [2, 0, 3]
            ])
# 按照指定列索引进行分组(看作RNN中一个样本序列),如下为按照第二列分组的结果
# [[[1, 2, 3], [0, 0, 0], [0, 0, 0]],
# [[3, 0, 2], [2, 0, 3], [0, 0, 0]],
# [[1, 1, 4], [2, 1, 2], [0, 1, 1]]]

# 第一步,将原始数据按照某列序列化使之成为一个序列数据
def groupby(a, col_index): # 未加入索引越界判断
  max_len = max(Counter(a[:, col_index]).values())
  for i in set(a[:, col_index]):
    d[i] = []
  for sample in a:
    d[sample[col_index]].append(list(sample))
#   for key in d:
#     d[key].extend([[0]*a.shape[1] for _ in range(max_len-len(d[key]))])
  return list(d.values()), [len(_) for _ in d.values()]

samples, sizes = groupby(origin_data, 2)
# 第二步,根据当前这一批次的中最大序列长度max(sizes)作为padding标准(不同批次的样本序列长度可以不一样,但同一批次要求一样(包括padding的部分)),当然也可以一次性将所有样本(不按照批量)按照最大序列长度padding也行,可能空间浪费
paddig_samples = np.zeros([len(samples), max(sizes), 3])
for seq_index, seq in enumerate(samples):
  paddig_samples[seq_index, :len(seq), :] = seq
paddig_samples

以上这篇keras在构建LSTM模型时对变长序列的处理操作就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python迭代器实例简析
Sep 25 Python
总结python爬虫抓站的实用技巧
Aug 09 Python
使用Template格式化Python字符串的方法
Jan 22 Python
Python字典的核心底层原理讲解
Jan 24 Python
新手如何发布Python项目开源包过程详解
Jul 11 Python
python plotly绘制直方图实例详解
Jul 22 Python
wxPython绘图模块wxPyPlot实现数据可视化
Nov 19 Python
python 多维高斯分布数据生成方式
Dec 09 Python
基于TensorFlow中自定义梯度的2种方式
Feb 04 Python
Python定时器线程池原理详解
Feb 26 Python
Python猫眼电影最近上映的电影票房信息
Sep 18 Python
python+selenium实现12306模拟登录的步骤
Jan 21 Python
Python爬虫爬取博客实现可视化过程解析
Jun 29 #Python
使用keras框架cnn+ctc_loss识别不定长字符图片操作
Jun 29 #Python
浅谈keras中的后端backend及其相关函数(K.prod,K.cast)
Jun 29 #Python
如何使用python记录室友的抖音在线时间
Jun 29 #Python
Python sublime安装及配置过程详解
Jun 29 #Python
keras K.function获取某层的输出操作
Jun 29 #Python
Python pytesseract验证码识别库用法解析
Jun 29 #Python
You might like
三个类概括PHP的五种设计模式
2012/09/05 PHP
PHP中使用GD库创建圆形饼图的例子
2014/11/19 PHP
在WordPress的后台中添加顶级菜单和子菜单的函数详解
2016/01/11 PHP
Symfony2之session与cookie用法小结
2016/03/18 PHP
PHP函数import_request_variables()用法分析
2016/04/02 PHP
PHP二维数组矩形转置实例
2016/07/20 PHP
php7安装mongoDB扩展的方法分析
2017/08/02 PHP
PHP生成随机字符串实例代码(字母+数字)
2019/09/11 PHP
php 使用 __call实现重载功能示例
2019/11/18 PHP
JQUERY 对象与DOM对象之两者相互间的转换
2009/04/27 Javascript
Javascript 解疑
2009/11/11 Javascript
javascript禁用键盘功能键让右击及其他键无效
2013/10/09 Javascript
Js 导出table内容到Excel的简单实例
2013/11/19 Javascript
JS+CSS实现可以凹陷显示选中单元格的方法
2015/03/02 Javascript
jQuery实现新消息闪烁标题提示的方法
2015/03/11 Javascript
javascript常用正则表达式汇总
2015/07/31 Javascript
懒加载实现的分页&amp;&amp;网站footer自适应
2016/12/21 Javascript
hovertree插件实现二级树形菜单(简单实用)
2016/12/28 Javascript
webpack配置的最佳实践分享
2017/04/21 Javascript
React Native中Mobx的使用方法详解
2018/12/04 Javascript
vue 2.5.1 源码学习 之Vue.extend 和 data的合并策略
2019/06/04 Javascript
简单了解微信小程序的目录结构
2019/07/01 Javascript
Vue中遍历数组的新方法实例详解
2019/07/21 Javascript
[51:07]VGJ.S vs Pain 2018国际邀请赛小组赛BO2 第一场 8.17
2018/08/20 DOTA
[52:14]VG vs Serenity 2018国际邀请赛小组赛BO2 第一场 8.17
2018/08/20 DOTA
删除python pandas.DataFrame 的多重index实例
2018/06/08 Python
解决python flask中config配置管理的问题
2019/07/26 Python
python解决OpenCV在读取显示图片的时候闪退的问题
2021/02/23 Python
金宝贝童装官网:Gymboree
2016/08/31 全球购物
英国第一的市场和亚马逊替代品:OnBuy
2019/03/16 全球购物
护士毕业生自我鉴定
2014/02/08 职场文书
欢迎领导检查标语
2014/06/27 职场文书
2015年公司行政后勤工作总结
2015/05/20 职场文书
2015年幼儿园国庆节活动总结
2015/07/30 职场文书
Nginx性能优化之Gzip压缩设置详解(最大程度提高页面打开速度)
2022/02/12 Servers
python绘制简单直方图(质量分布图)的方法
2022/04/21 Python