keras在构建LSTM模型时对变长序列的处理操作


Posted in Python onJune 29, 2020

我就废话不多说了,大家还是直接看代码吧~

print(np.shape(X))#(1920, 45, 20)
X=sequence.pad_sequences(X, maxlen=100, padding='post')
print(np.shape(X))#(1920, 100, 20)

model = Sequential()
model.add(Masking(mask_value=0,input_shape=(100,20)))
model.add(LSTM(128,dropout_W=0.5,dropout_U=0.5))
model.add(Dense(13,activation='softmax'))
model.compile(loss='categorical_crossentropy',
       optimizer='adam',
       metrics=['accuracy'])

# 用于保存验证集误差最小的参数,当验证集误差减少时,保存下来
checkpointer = ModelCheckpoint(filepath="keras_rnn.hdf5", verbose=1, save_best_only=True, )
history = LossHistory()
result = model.fit(X, Y, batch_size=10,
          nb_epoch=500, verbose=1, validation_data=(testX, testY),
          callbacks=[checkpointer, history])

model.save('keras_rnn_epochend.hdf5')

补充知识:RNN(LSTM)数据形式及Padding操作处理变长时序序列dynamic_rnn

Summary

RNN

样本一样,计算的状态值和输出结构一致,也即是说只要当前时刻的输入值也前一状态值一样,那么其当前状态值和当前输出结果一致,因为在当前这一轮训练中权重参数和偏置均未更新

RNN的最终状态值与最后一个时刻的输出值一致

输入数据要求格式为,shape=(batch_size, step_time_size, input_size),那么,state的shape=(batch_size, state_size);output的shape=(batch_size, step_time_size, state_size),并且最后一个有效输出(有效序列长度,不包括padding的部分)与状态值会一样

LSTM

LSTM与RNN基本一致,不同在于其状态有两个c_state和h_state,它们的shape一样,输出值output的最后一个有效输出与h_state一致

用变长RNN训练,要求其输入格式仍然要求为shape=(batch_size, step_time_size, input_size),但可指定每一个批次中各个样本的有效序列长度,这样在有效长度内其状态值和输出值原理不变,但超过有效长度的部分的状态值将不会发生改变,而输出值都将是shape=(state_size,)的零向量(注:RNN也是这个原理)

需要说明的是,不是因为无效序列长度部分全padding为0而引起输出全为0,状态不变,因为输出值和状态值得计算不仅依赖当前时刻的输入值,也依赖于上一时刻的状态值。其内部原理是利用一个mask matrix矩阵标记有效部分和无效部分,这样在无效部分就不用计算了,也就是说,这一部分不会造成反向传播时对参数的更新。当然,如果padding不是零,那么padding的这部分输出和状态同样与padding为零的结果是一样的

'''
#样本数据为(batch_size,time_step_size, input_size[embedding_size])的形式,其中samples=4,timesteps=3,features=3,其中第二个、第四个样本是只有一个时间步长和二个时间步长的,这里自动补零
'''
import pandas as pd
import numpy as np
import tensorflow as tf

train_X = np.array([[[0, 1, 2], [9, 8, 7], [3,6,8]], 
          [[3, 4, 5], [0, 10, 110], [0,0,0]], 
          [[6, 7, 8], [6, 5, 4], [1,7,4]], 
          [[9, 0, 1], [3, 7, 4], [0,0,0]],
          [[9, 0, 1], [3, 3, 4], [0,0,0]]
          ])
          
sequence_length = [3, 1, 3, 2, 2]

train_X.shape, train_X[:,2:3,:].reshape(5, 3)
tf.reset_default_graph()

x = tf.placeholder(tf.float32, shape=(None, 3, 3)) # 输入数据只需能够迭代并符合要求shape即可,list也行,shape不指定表示没有shape约束,任意shape均可
rnn_cell = tf.nn.rnn_cell.BasicRNNCell(num_units=6) # state_size[hidden_size]
lstm_cell = tf.nn.rnn_cell.BasicLSTMCell(num_units=6) # state_size[hidden_size]
outputs1, state1 = tf.nn.dynamic_rnn(rnn_cell, x, dtype=tf.float32, sequence_length=sequence_length)
outputs2, state2 = tf.nn.dynamic_rnn(lstm_cell, x, dtype=tf.float32, sequence_length=sequence_length)

with tf.Session() as sess:
  sess.run(tf.global_variables_initializer()) # 初始化rnn_cell中参数变量
  outputs1, state1 = sess.run((outputs1, state1), feed_dict={x: train_X})
  outputs2, state2 = sess.run([outputs2, state2], feed_dict={x: train_X})
  print(outputs1.shape, state1.shape) # (4, 3, 5)->(batch_size, time_step_size, state_size), (4, 5)->(batch_size, state_size)
  print(outputs2.shape) # state2为LSTMStateTuple(c_state, h_state)
  print("---------output1<rnn>state1-----------")
  print(outputs1) # 可以看出output1的最后一个时刻的输出即为state1, 即output1[:,-1,:]与state1相等
  print(state1)
  print(np.all(outputs1[:,-1,:] == state1))
  print("---------output2<lstm>state2-----------")
  print(outputs2) # 可以看出output2的最后一个时刻的输出即为LSTMStateTuple中的h
  print(state2)
  print(np.all(outputs2[:,-1,:] == state2[1]))

再来怼怼dynamic_rnn中数据序列长度tricks

keras在构建LSTM模型时对变长序列的处理操作

思路样例代码

from collections import Counter
import numpy as np

origin_data = np.array([[1, 2, 3],
            [3, 0, 2],
            [1, 1, 4],
            [2, 1, 2],
            [0, 1, 1],
            [2, 0, 3]
            ])
# 按照指定列索引进行分组(看作RNN中一个样本序列),如下为按照第二列分组的结果
# [[[1, 2, 3], [0, 0, 0], [0, 0, 0]],
# [[3, 0, 2], [2, 0, 3], [0, 0, 0]],
# [[1, 1, 4], [2, 1, 2], [0, 1, 1]]]

# 第一步,将原始数据按照某列序列化使之成为一个序列数据
def groupby(a, col_index): # 未加入索引越界判断
  max_len = max(Counter(a[:, col_index]).values())
  for i in set(a[:, col_index]):
    d[i] = []
  for sample in a:
    d[sample[col_index]].append(list(sample))
#   for key in d:
#     d[key].extend([[0]*a.shape[1] for _ in range(max_len-len(d[key]))])
  return list(d.values()), [len(_) for _ in d.values()]

samples, sizes = groupby(origin_data, 2)
# 第二步,根据当前这一批次的中最大序列长度max(sizes)作为padding标准(不同批次的样本序列长度可以不一样,但同一批次要求一样(包括padding的部分)),当然也可以一次性将所有样本(不按照批量)按照最大序列长度padding也行,可能空间浪费
paddig_samples = np.zeros([len(samples), max(sizes), 3])
for seq_index, seq in enumerate(samples):
  paddig_samples[seq_index, :len(seq), :] = seq
paddig_samples

以上这篇keras在构建LSTM模型时对变长序列的处理操作就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python读写ini文件的方法
May 28 Python
python中logging库的使用总结
Oct 18 Python
python2.7实现FTP文件下载功能
Apr 15 Python
Selenium(Python web测试工具)基本用法详解
Aug 10 Python
Python3对称加密算法AES、DES3实例详解
Dec 06 Python
python使用KNN算法识别手写数字
Apr 25 Python
Django 多环境配置详解
May 14 Python
8种用Python实现线性回归的方法对比详解
Jul 10 Python
在Django下测试与调试REST API的方法详解
Aug 29 Python
基于Python 的语音重采样函数解析
Jul 06 Python
Python 捕获代码中所有异常的方法
Aug 03 Python
Python变量格式化输出实现原理解析
Aug 06 Python
Python爬虫爬取博客实现可视化过程解析
Jun 29 #Python
使用keras框架cnn+ctc_loss识别不定长字符图片操作
Jun 29 #Python
浅谈keras中的后端backend及其相关函数(K.prod,K.cast)
Jun 29 #Python
如何使用python记录室友的抖音在线时间
Jun 29 #Python
Python sublime安装及配置过程详解
Jun 29 #Python
keras K.function获取某层的输出操作
Jun 29 #Python
Python pytesseract验证码识别库用法解析
Jun 29 #Python
You might like
一致性哈希算法以及其PHP实现详细解析
2013/08/24 PHP
php对称加密算法示例
2014/05/07 PHP
在Laravel5中正确设置文件权限的方法
2019/05/22 PHP
一段实现页面上的图片延时加载的js代码
2010/02/11 Javascript
JQuery优缺点分析说明
2010/06/09 Javascript
caller和callee的区别介绍及演示结果
2013/03/10 Javascript
javascript 通用loading动画效果实例代码
2014/01/14 Javascript
javascript闭包入门示例
2014/04/30 Javascript
jquery如何获取元素的滚动条高度等实现代码
2015/10/19 Javascript
js创建jsonArray传输至后台及后台全面解析
2016/04/11 Javascript
JS 判断某变量是否为某数组中的一个值的3种方法(总结)
2017/07/10 Javascript
vue-awesome-swiper滑块插件使用方法详解
2017/11/27 Javascript
微信小程序环境下将文件上传到OSS的方法步骤
2019/05/31 Javascript
微信公众号平台接口开发 获取access_token过程解析
2019/08/14 Javascript
js实现图片无缝循环轮播
2019/10/28 Javascript
微信小程序云函数添加数据到数据库的方法
2020/03/04 Javascript
使用React-Router实现前端路由鉴权的示例代码
2020/07/26 Javascript
JS实现拖动模糊框特效
2020/08/25 Javascript
vue解决跨域问题(推荐)
2020/11/10 Javascript
ant design pro中可控的筛选和排序实例
2020/11/17 Javascript
python简单实现基于SSL的IRC bot实例
2015/06/15 Python
理解Python中的绝对路径和相对路径
2017/08/30 Python
opencv与numpy的图像基本操作
2019/03/08 Python
基于css3实现漂亮便签样式
2013/03/18 HTML / CSS
移动端Html5中百度地图的点击事件
2019/01/31 HTML / CSS
Nike俄罗斯官方网站:Nike RU
2021/03/05 全球购物
通用求职信范文模板分享
2013/12/27 职场文书
高中地理教学反思
2014/01/29 职场文书
《猴子种树》教学反思
2014/02/14 职场文书
项目合作意向书模板
2014/07/29 职场文书
水利专业大学生职业生涯规划书范文
2014/09/17 职场文书
教师群众路线学习心得体会
2014/11/04 职场文书
计算机实训报告总结
2014/11/05 职场文书
2014年远程教育工作总结
2014/12/09 职场文书
三好学生事迹材料
2014/12/24 职场文书
淮海战役观后感
2015/06/11 职场文书