Pytorch 实现变量类型转换


Posted in Python onMay 17, 2021

Pytorch的数据类型为各式各样的Tensor,Tensor可以理解为高维矩阵。

与Numpy中的Array类似。Pytorch中的tensor又包括CPU上的数据类型和GPU上的数据类型,一般GPU上的Tensor是CPU上的Tensor加cuda()函数得到。通过使用Type函数可以查看变量类型。

一般系统默认是torch.FloatTensor类型。

例如data = torch.Tensor(2,3)是一个2*3的张量,类型为FloatTensor; data.cuda()就转换为GPU的张量类型,torch.cuda.FloatTensor类型。

下面简单介绍一下Pytorch中变量之间的相互转换

(1)CPU或GPU张量之间的转换

一般只要在Tensor后加long(), int(), double(),float(),byte()等函数就能将Tensor进行类型转换;

例如:Torch.LongTensor--->Torch.FloatTensor, 直接使用data.float()即可

还可以使用type()函数,data为Tensor数据类型,data.type()为给出data的类型,如果使用data.type(torch.FloatTensor)则强制转换为torch.FloatTensor类型张量。

当你不知道要转换为什么类型时,但需要求a1,a2两个张量的乘积,可以使用a1.type_as(a2)将a1转换为a2同类型。

(2)CPU张量 ----> GPU张量, 使用data.cuda()

(3)GPU张量 ----> CPU张量 使用data.cpu()

(4)Variable变量转换成普通的Tensor,其实可以理解Variable为一个Wrapper,里头的data就是Tensor. 如果Var是Variable变量,使用Var.data获得Tensor变量

(5)Tensor与Numpy Array之间的转换

Tensor---->Numpy 可以使用 data.numpy(),data为Tensor变量

Numpy ----> Tensor 可以使用torch.from_numpy(data),data为numpy变量

补充:Numpy/Pytorch之数据类型与强制类型转换

1.数据类型简介

Numpy

NumPy 支持比 Python 更多种类的数值类型。 下表显示了 NumPy 中定义的不同标量数据类型。

序号 数据类型及描述
1. bool_存储为一个字节的布尔值(真或假)
2. int_默认整数,相当于 C 的long,通常为int32或int64
3. intc相当于 C 的int,通常为int32或int64
4. intp用于索引的整数,相当于 C 的size_t,通常为int32或int64
5. int8字节(-128 ~ 127)
6. int1616 位整数(-32768 ~ 32767)
7. int3232 位整数(-2147483648 ~ 2147483647)
8. int6464 位整数(-9223372036854775808 ~ 9223372036854775807)
9. uint88 位无符号整数(0 ~ 255)
10. uint1616 位无符号整数(0 ~ 65535)
11. uint3232 位无符号整数(0 ~ 4294967295)
12. uint6464 位无符号整数(0 ~ 18446744073709551615)
13. float_float64的简写
14. float16半精度浮点:符号位,5 位指数,10 位尾数
15. float32单精度浮点:符号位,8 位指数,23 位尾数
16. float64双精度浮点:符号位,11 位指数,52 位尾数
17. complex_complex128的简写
18. complex64复数,由两个 32 位浮点表示(实部和虚部)
19.

complex128复数,由两个 64 位浮点表示(实部和虚部)

直接使用类型名很可能会报错,正确的使用方式是np.调用,eg, np.uint8

Pytorch

Torch定义了七种CPU张量类型和八种GPU张量类型,这里我们就只讲解一下CPU中的,其实GPU中只是中间加一个cuda即可,如torch.cuda.FloatTensor:

torch.FloatTensor(2,3) 构建一个2*3 Float类型的张量

torch.DoubleTensor(2,3) 构建一个2*3 Double类型的张量

torch.ByteTensor(2,3) 构建一个2*3 Byte类型的张量

torch.CharTensor(2,3) 构建一个2*3 Char类型的张量

torch.ShortTensor(2,3) 构建一个2*3 Short类型的张量

torch.IntTensor(2,3) 构建一个2*3 Int类型的张量

torch.LongTensor(2,3) 构建一个2*3 Long类型的张量

同样,直接使用类型名很可能会报错,正确的使用方式是torch.调用,eg,torch.FloatTensor()

2.Python的type()函数

type函数可以由变量调用,或者把变量作为参数传入。

返回的是该变量的类型,而非数据类型。

data = np.random.randint(0, 255, 300)
print(type(data))

输出

<class 'numpy.ndarray'>

3.Numpy/Pytorch的dtype属性

返回值为变量的数据类型

t_out = torch.Tensor(1,2,3)
print(t_out.dtype)

输出

torch.float32

t_out = torch.Tensor(1,2,3)

print(t_out.numpy().dtype)

输出

float32

4.Numpy中的类型转换

先聊聊我为什么会用到这个函数(不看跳过)

为了实施trochvision.transforms.ToPILImage()函数

于是我想从numpy的ndarray类型转成PILImage类型

我做了以下尝试

data = np.random.randint(0, 255, 300)
n_out = data.reshape(10,10,3)
print(n_out.dtype)
img = transforms.ToPILImage()(n_out)
img.show()

但是很遗憾,报错了

raise TypeError('Input type {} is not supported'.format(npimg.dtype))

TypeError: Input type int32 is not supported

因为要将ndarray转成PILImage要求ndarray是uint8类型的。

于是我认输了。。。

使用了

n_out = np.linspace(0,255,300,dtype=np.uint8)
n_out = n_out.reshape(10,10,3)
print(n_out.dtype)
img = torchvision.transforms.ToPILImage()(n_out)
img.show()

得到了输出

uint8

Pytorch 实现变量类型转换

嗯,显示了一张图片

但是呢,就很憋屈,和想要的随机数效果不一样。

于是我用了astype函数

astype()函数

由变量调用,但是直接调用不会改变原变量的数据类型,是返回值是改变类型后的新变量,所以要赋值回去。

n_out = n_out.astype(np.uint8)
#初始化随机数种子
np.random.seed(0)
 
data = np.random.randint(0, 255, 300)
print(data.dtype)
n_out = data.reshape(10,10,3)
 
#强制类型转换
n_out = n_out.astype(np.uint8)
print(n_out.dtype)
 
img = transforms.ToPILImage()(n_out)
img.show()

输出

int32

uint8

Pytorch 实现变量类型转换

5.Pytorch中的类型转换

pytorch中没有astype函数,正确的转换方法是

Way1 : 变量直接调用类型

tensor = torch.Tensor(3, 5)

torch.long() 将tensor投射为long类型

newtensor = tensor.long()

torch.half()将tensor投射为半精度浮点类型

newtensor = tensor.half()

torch.int()将该tensor投射为int类型

newtensor = tensor.int()

torch.double()将该tensor投射为double类型

newtensor = tensor.double()

torch.float()将该tensor投射为float类型

newtensor = tensor.float()

torch.char()将该tensor投射为char类型

newtensor = tensor.char()

torch.byte()将该tensor投射为byte类型

newtensor = tensor.byte()

torch.short()将该tensor投射为short类型

newtensor = tensor.short()

同样,和numpy中的astype函数一样,是返回值才是改变类型后的结果,调用的变量类型不变

Way2 : 变量调用pytorch中的type函数

type(new_type=None, async=False)如果未提供new_type,则返回类型,否则将此对象转换为指定的类型。 如果已经是正确的类型,则不会执行且返回原对象。

用法如下:

self = torch.LongTensor(3, 5)
# 转换为其他类型
print self.type(torch.FloatTensor)

Way3 : 变量调用pytorch中的type_as函数

如果张量已经是正确的类型,则不会执行操作。具体操作方法如下:

self = torch.Tensor(3, 5)
tesnor = torch.IntTensor(2,3)
print self.type_as(tesnor)

以上为个人经验,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
基于wxpython实现的windows GUI程序实例
May 30 Python
python常用函数详解
Sep 13 Python
linux环境下python中MySQLdb模块的安装方法
Jun 16 Python
Python爬取十篇新闻统计TF-IDF
Jan 03 Python
Python操作json的方法实例分析
Dec 06 Python
python3.6实现学生信息管理系统
Feb 21 Python
对Python中class和instance以及self的用法详解
Jun 26 Python
python 判断三个数字中的最大值实例代码
Jul 24 Python
Python安装及Pycharm安装使用教程图解
Sep 20 Python
Python使用贪婪算法解决问题
Oct 22 Python
python列表推导和生成器表达式知识点总结
Jan 10 Python
python实现快递价格查询系统
Mar 03 Python
Python进度条的使用
May 17 #Python
Python包管理工具pip的15 个使用小技巧
Python中json.dumps()函数的使用解析
May 17 #Python
Python中threading库实现线程锁与释放锁
Python中Cookies导出某站用户数据的方法
May 17 #Python
Python 高级库15 个让新手爱不释手(推荐)
Python带你从浅入深探究Tuple(基础篇)
May 15 #Python
You might like
用PHP将网址字符串转换成超链接(网址或email)
2010/05/25 PHP
php版小黄鸡simsimi聊天机器人接口分享
2014/01/26 PHP
PHP中SimpleXML函数用法分析
2014/11/26 PHP
使用Appcan客户端自动更新PHP版本号(全)
2015/07/31 PHP
php正则提取html图片(img)src地址与任意属性的方法
2017/02/08 PHP
php 函数中静态变量使用的问题实例分析
2020/03/05 PHP
js资料toString 方法
2007/03/13 Javascript
Javascript算符的优先级介绍
2013/03/20 Javascript
js获取事件源及触发该事件的对象
2013/10/24 Javascript
js抽奖实现随机抽奖代码效果
2013/12/02 Javascript
jquery 鼠标滑动显示详情应用示例
2014/01/24 Javascript
Winform客户端向web地址传参接收参数的方法
2016/05/17 Javascript
jQuery 如何实现一个滑动按钮开关
2016/12/01 Javascript
轻松搞定jQuery+JSONP跨域请求的解决方案
2018/03/06 jQuery
layui-tree实现Ajax异步请求后动态添加节点的方法
2019/09/23 Javascript
解决VUE双向绑定失效的问题
2019/10/29 Javascript
Python卸载模块的方法汇总
2016/06/07 Python
linux环境下python中MySQLdb模块的安装方法
2017/06/16 Python
Python实现动态图解析、合成与倒放
2018/01/18 Python
python RabbitMQ 使用详细介绍(小结)
2018/11/08 Python
python 读取Linux服务器上的文件方法
2018/12/27 Python
Python设计模式之策略模式实例详解
2019/01/21 Python
Python实现插入排序和选择排序的方法
2019/05/12 Python
探秘TensorFlow 和 NumPy 的 Broadcasting 机制
2020/03/13 Python
SmartBuyGlasses丹麦:网上购买名牌太阳镜、眼镜和隐形眼镜
2016/10/01 全球购物
英超联赛的首选足球:Mitre足球
2019/05/06 全球购物
是什么让J2EE适合用来开发多层的分布式的应用
2015/01/16 面试题
阿里巴巴Oracle DBA笔试题答案-备份恢复类
2013/11/20 面试题
如何拷贝一整个Java对象,包括它的状态
2013/12/27 面试题
创先争优标语
2014/06/27 职场文书
《微笑着面对生活》优秀演讲稿范文
2014/09/23 职场文书
党员个人剖析材料(四风问题)
2014/10/07 职场文书
敬业奉献模范事迹材料
2014/12/24 职场文书
2015年度党风廉政建设工作情况汇报
2015/01/02 职场文书
数学教师个人工作总结
2015/02/06 职场文书
出国留学导师推荐信
2015/03/26 职场文书