对tensorflow中cifar-10文档的Read操作详解


Posted in Python onFebruary 10, 2020

前言

在tensorflow的官方文档中得卷积神经网络一章,有一个使用cifar-10图片数据集的实验,搭建卷积神经网络倒不难,但是那个cifar10_input文件着实让我费了一番心思。配合着官方文档也算看的七七八八,但是中间还是有一些不太明白,不明白的mark一下,这次记下一些已经明白的。

研究

cifar10_input.py文件的read操作,主要的就是下面的代码:

if not eval_data:
  filenames = [os.path.join(data_dir, 'data_batch_%d.bin' % i)
         for i in xrange(1, 6)]
  num_examples_per_epoch = NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN
 else:
  filenames = [os.path.join(data_dir, 'test_batch.bin')]
  num_examples_per_epoch = NUM_EXAMPLES_PER_EPOCH_FOR_EVAL
...
filename_queue = tf.train.string_input_producer(filenames)

...

label_bytes = 1 # 2 for CIFAR-100
 result.height = 32
 result.width = 32
 result.depth = 3
 image_bytes = result.height * result.width * result.depth
 # Every record consists of a label followed by the image, with a
 # fixed number of bytes for each.
 record_bytes = label_bytes + image_bytes

 # Read a record, getting filenames from the filename_queue. No
 # header or footer in the CIFAR-10 format, so we leave header_bytes
 # and footer_bytes at their default of 0.
 reader = tf.FixedLengthRecordReader(record_bytes=record_bytes)
 result.key, value = reader.read(filename_queue)

 ...

 if shuffle:
  images, label_batch = tf.train.shuffle_batch(
    [image, label],
    batch_size=batch_size,
    num_threads=num_preprocess_threads,
    capacity=min_queue_examples + 3 * batch_size,
    min_after_dequeue=min_queue_examples)
 else:
  images, label_batch = tf.train.batch(
    [image, label],
    batch_size=batch_size,
    num_threads=num_preprocess_threads,
    capacity=min_queue_examples + 3 * batch_size)

开始并不明白这段代码是用来干什么的,越看越糊涂,因为之前使用tensorflow最多也就是使用哪个tf.placeholder()这个操作,并没有使用tensorflow自带的读写方法来读写,所以上面的代码看的很费劲儿。不过我在官方文档的How-To这个document中看到了这个东西:

Batching

def read_my_file_format(filename_queue):
 reader = tf.SomeReader()
 key, record_string = reader.read(filename_queue)
 example, label = tf.some_decoder(record_string)
 processed_example = some_processing(example)
 return processed_example, label

def input_pipeline(filenames, batch_size, num_epochs=None):
 filename_queue = tf.train.string_input_producer(
   filenames, num_epochs=num_epochs, shuffle=True)
 example, label = read_my_file_format(filename_queue)
 # min_after_dequeue defines how big a buffer we will randomly sample
 #  from -- bigger means better shuffling but slower start up and more
 #  memory used.
 # capacity must be larger than min_after_dequeue and the amount larger
 #  determines the maximum we will prefetch. Recommendation:
 #  min_after_dequeue + (num_threads + a small safety margin) * batch_size
 min_after_dequeue = 10000
 capacity = min_after_dequeue + 3 * batch_size
 example_batch, label_batch = tf.train.shuffle_batch(
   [example, label], batch_size=batch_size, capacity=capacity,
   min_after_dequeue=min_after_dequeue)
 return example_batch, label_batch

感觉豁然开朗,再研究一下其官方文档API就能大约明白期间意思。最有代表性的图示官方文档中也给出来了,虽然官方文档给的解释并不多。

对tensorflow中cifar-10文档的Read操作详解

API我就不一一解释了,我们下面通过实验来明白。

实验

首先在tensorflow路径下创建两个文件,分别命名为test.txt以及test2.txt,其内容分别是:

test.txt:

test line1
test line2
test line3
test line4
test line5
test line6

test2.txt:

test2 line1
test2 line2
test2 line3
test2 line4
test2 line5
test2 line6

然后再命令行里依次键入下面的命令:

import tensorflow as tf
filenames=['test.txt','test2.txt']
#创建如上图所示的filename_queue
filename_queue=tf.train.string_input_producer(filenames)
#选取的是每次读取一行的TextLineReader
reader=tf.TextLineReader()
init=tf.initialize_all_variables()
#读取文件,也就是创建上图中的Reader
key,value=reader.read(filename_queue)
#读取batch文件,batch_size设置成1,为了方便看
bs=tf.train.batch([value],batch_size=1,num_threads=1,capacity=2)
sess=tf.Session() 
#非常关键,这个是连通各个queue图的关键          
tf.train.start_queue_runners(sess=sess)
#计算有reader的输出
b=reader.num_records_produced()

然后我们执行:

>>> sess.run(bs)
array(['test line1'], dtype=object)
>>> sess.run(b)
4
>>> sess.run(bs)
array(['test line2'], dtype=object)
>>> sess.run(b)
5
>>> sess.run(bs)
array(['test line3'], dtype=object)
>>> sess.run(bs)
array(['test line4'], dtype=object)
>>> sess.run(bs)
array(['test line5'], dtype=object)
>>> sess.run(bs)
array(['test line6'], dtype=object)
>>> sess.run(bs)
array(['test2 line1'], dtype=object)
>>> sess.run(bs)
array(['test2 line2'], dtype=object)
>>> sess.run(bs)
array(['test2 line3'], dtype=object)
>>> sess.run(bs)
array(['test2 line4'], dtype=object)
>>> sess.run(bs)
array(['test2 line5'], dtype=object)
>>> sess.run(bs)
array(['test2 line6'], dtype=object)
>>> sess.run(bs)
array(['test2 line1'], dtype=object)
>>> sess.run(bs)
array(['test2 line2'], dtype=object)
>>> sess.run(bs)
array(['test2 line3'], dtype=object)
>>> sess.run(bs)
array(['test2 line4'], dtype=object)
>>> sess.run(bs)
array(['test2 line5'], dtype=object)
>>> sess.run(bs)
array(['test2 line6'], dtype=object)
>>> sess.run(bs)
array(['test line1'], dtype=object)

我们发现,当batch_size设置成为1的时候,bs的输出是按照文件行数进行逐步打印的,原因是,我们选择的是单个Reader进行操作的,这个Reader先将test.txt文件读取,然后逐行读取并将读取的文本送到example queue(如上图)中,因为这里batch设置的是1,而且用到的是tf.train.batch()方法,中间没有shuffle,所以自然而然是按照顺序输出的,之后Reader再读取test2.txt。但是这里有一个疑惑,为什么reader.num_records_produced的第一个输出不是从1开始的,这点不太清楚。 另外,打印出filename_queue的size:

>>> sess.run(filename_queue.size())
32

发现filename_queue的size有32个之多!这点也不明白。。。

我们可以更改实验条件,将batch_size设置成2,会发现也是顺序的输出,而且每次输出为2行文本(和batch_size一样)

我们继续更改实验条件,将tf.train.batch方法换成tf.train.shuffle_batch方法,文本数据不变:

import tensorflow as tf
filenames=['test.txt','test2.txt']
filename_queue=tf.train.string_input_producer(filenames)
reader=tf.TextLineReader()
init=tf.initialize_all_variables()
key,value=reader.read(filename_queue)
bs=tf.train.shuffle_batch([value],batch_size=1,num_threads=1,capacity=4,min_after_dequeue=2)
sess=tf.Session()           
tf.train.start_queue_runners(sess=sess)
b=reader.num_records_produced()

继续刚才的执行:

>>> sess.run(bs)
array(['test2 line2'], dtype=object)
>>> sess.run(bs)
array(['test2 line5'], dtype=object)
>>> sess.run(bs)
array(['test2 line6'], dtype=object)
>>> sess.run(bs)
array(['test2 line4'], dtype=object)
>>> sess.run(bs)
array(['test2 line3'], dtype=object)
>>> sess.run(bs)
array(['test line1'], dtype=object)
>>> sess.run(bs)
array(['test line2'], dtype=object)
>>> sess.run(bs)
array(['test2 line1'], dtype=object)
>>> sess.run(bs)
array(['test line4'], dtype=object)
>>> sess.run(bs)
array(['test line5'], dtype=object)
>>> sess.run(bs)
array(['test2 line1'], dtype=object)
>>> sess.run(bs)
array(['test line3'], dtype=object)

我们发现的是,使用了shuffle操作之后,明显的bs的输出变得不一样了,变得没有规则,然后我们看filename_queue的size:

>>> sess.run(filename_queue.size())
32

发现也是32,由此估计是tensorflow会根据文件大小默认filename_queue的长度。 注意这里面的capacity=4,min_after_dequeue=2这些个命令,capacity指的是example queue的最大长度, 而min_after_dequeue是指在出队列之后,example queue最少要保留的元素个数,为什么需要这个,其实是为了混合的更显著。也正是有这两个元素,让shuffle变得可能。

到这里基本上大概的思路能明白,但是上面的实验都是对于单个的Reader,和上一节的图不太一致,根据官网教程,为了使用多个Reader,我们可以这样:

import tensorflow as tf
filenames=['test.txt','test2.txt']
filename_queue=tf.train.string_input_producer(filenames)
reader=tf.TextLineReader()
init=tf.initialize_all_variables()
key_list,value_list=[reader.read(filename_queue) for _ in range(2)]
bs2=tf.train.shuffle_batch_join([value_list],batch_size=1,capacity=4,min_after_dequeue=2)
sess=tf.Session()       
sess.run(init)    
tf.train.start_queue_runners(sess=sess)

运行的结果如下:

>>> sess.run(bs2)
[array(['test2.txt:2'], dtype=object), array(['test2 line2'], dtype=object)]
>>> sess.run(bs2)
[array(['test2.txt:5'], dtype=object), array(['test2 line5'], dtype=object)]
>>> sess.run(bs2)
[array(['test2.txt:6'], dtype=object), array(['test2 line6'], dtype=object)]
>>> sess.run(bs2)
[array(['test2.txt:4'], dtype=object), array(['test2 line4'], dtype=object)]
>>> sess.run(bs2)
[array(['test2.txt:3'], dtype=object), array(['test2 line3'], dtype=object)]
>>> sess.run(bs2)
[array(['test2.txt:1'], dtype=object), array(['test2 line1'], dtype=object)]
>>> sess.run(bs2)
[array(['test.txt:4'], dtype=object), array(['test line4'], dtype=object)]
>>> sess.run(bs2)
[array(['test.txt:3'], dtype=object), array(['test line3'], dtype=object)]
>>> sess.run(bs2)
[array(['test.txt:2'], dtype=object), array(['test line2'], dtype=object)]

以上这篇对tensorflow中cifar-10文档的Read操作详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python实现RSA加密(解密)算法
Feb 17 Python
Python列表切片用法示例
Apr 19 Python
Python实现的科学计算器功能示例
Aug 04 Python
详解使用 pyenv 管理多个版本 python 环境
Oct 19 Python
pycharm恢复默认设置或者是替换pycharm的解释器实例
Oct 29 Python
Python常见数字运算操作实例小结
Mar 22 Python
python之生产者消费者模型实现详解
Jul 27 Python
python并发爬虫实用工具tomorrow实用解析
Sep 25 Python
Pytorch根据layers的name冻结训练方式
Jan 06 Python
python 通过pip freeze、dowload打离线包及自动安装的过程详解(适用于保密的离线环境
Dec 14 Python
python使用numpy中的size()函数实例用法详解
Jan 29 Python
解决pycharm不能自动保存在远程linux中的问题
Feb 06 Python
基于Tensorflow:CPU性能分析
Feb 10 #Python
python sorted函数原理解析及练习
Feb 10 #Python
python pprint模块中print()和pprint()两者的区别
Feb 10 #Python
python yield和Generator函数用法详解
Feb 10 #Python
Tensorflow 卷积的梯度反向传播过程
Feb 10 #Python
tensorflow 实现自定义梯度反向传播代码
Feb 10 #Python
用Python做一个久坐提醒小助手的示例代码
Feb 10 #Python
You might like
Phpbean路由转发的php代码
2008/01/10 PHP
PHP中array_merge和array相加的区别分析
2013/06/17 PHP
php实现插入数组但不影响原有顺序的方法
2015/03/27 PHP
php curl请求信息和返回信息设置代码实例
2015/04/27 PHP
php开发时容易忘记的一些技术细节
2016/02/03 PHP
php 策略模式原理与应用深入理解
2019/09/25 PHP
一些mootools的学习资源
2010/02/07 Javascript
js parseInt("08")未指定进位制问题
2010/06/19 Javascript
非常好用的JsonToString 方法 简单实例
2013/07/18 Javascript
基于javascript的JSON格式页面展示美化方法
2014/07/02 Javascript
Javascript中的getUTCHours()方法使用详解
2015/06/10 Javascript
Angular 路由route实例代码
2016/07/12 Javascript
超级简易的JS计算器实例讲解(实现加减乘除)
2017/08/08 Javascript
JavaSctit 利用FileReader和滤镜上传图片预览功能
2017/09/05 Javascript
mongoose更新对象的两种方法示例比较
2017/12/19 Javascript
jquery实现二级导航下拉菜单效果实例
2019/05/14 jQuery
vue之组件内监控$store中定义变量的变化详解
2019/11/08 Javascript
Vue路由管理器Vue-router的使用方法详解
2020/02/05 Javascript
[01:02]DOTA2辉夜杯决赛日 CDEC.Y对阵VG赛前花絮
2015/12/27 DOTA
Python中的Matplotlib模块入门教程
2015/04/15 Python
给Python入门者的一些编程建议
2015/06/15 Python
Django自定义插件实现网站登录验证码功能
2017/04/19 Python
Python探索之URL Dispatcher实例详解
2017/10/28 Python
K-means聚类算法介绍与利用python实现的代码示例
2017/11/13 Python
Python实现快速计算词频功能示例
2018/06/25 Python
符合语言习惯的 Python 优雅编程技巧【推荐】
2018/09/25 Python
pycharm配置当鼠标悬停时快速提示方法参数
2019/07/31 Python
利用python控制Autocad:pyautocad方式
2020/06/01 Python
python中翻译功能translate模块实现方法
2020/12/17 Python
Html5如何唤起百度地图App的方法
2019/01/27 HTML / CSS
POS解决方案:MUNBYN(热敏打印机、条形码扫描仪)
2020/06/09 全球购物
C/C++程序员常见面试题一
2012/12/08 面试题
夜班门卫岗位职责
2013/12/09 职场文书
检察官就职演讲稿
2014/01/13 职场文书
领导班子个人对照检查剖析材料
2014/09/29 职场文书
小学运动会开幕词
2015/01/28 职场文书