python中pandas库中DataFrame对行和列的操作使用方法示例


Posted in Python onJune 14, 2020

用pandas中的DataFrame时选取行或列:

import numpy as np
import pandas as pd
from pandas import Sereis, DataFrame

ser = Series(np.arange(3.))

data = DataFrame(np.arange(16).reshape(4,4),index=list('abcd'),columns=list('wxyz'))

data['w'] #选择表格中的'w'列,使用类字典属性,返回的是Series类型

data.w  #选择表格中的'w'列,使用点属性,返回的是Series类型

data[['w']] #选择表格中的'w'列,返回的是DataFrame类型

data[['w','z']] #选择表格中的'w'、'z'列

data[0:2] #返回第1行到第2行的所有行,前闭后开,包括前不包括后

data[1:2] #返回第2行,从0计,返回的是单行,通过有前后值的索引形式,
    #如果采用data[1]则报错

data.ix[1:2] #返回第2行的第三种方法,返回的是DataFrame,跟data[1:2]同

data['a':'b'] #利用index值进行切片,返回的是**前闭后闭**的DataFrame, 
    #即末端是包含的 

#——————新版本pandas已舍弃该方法,用iloc代替———————
data.irow(0)  #取data的第一行
data.icol(0)  #取data的第一列

ser.iget_value(0) #选取ser序列中的第一个
ser.iget_value(-1) #选取ser序列中的最后一个,这种轴索引包含索引器的series不能采用ser[-1]去获取最后一个,这会引起歧义。
#————————————————————————————-----------------

data.head() #返回data的前几行数据,默认为前五行,需要前十行则data.head(10)
data.tail() #返回data的后几行数据,默认为后五行,需要后十行则data.tail(10)

data.iloc[-1]  #选取DataFrame最后一行,返回的是Series
data.iloc[-1:]  #选取DataFrame最后一行,返回的是DataFrame

data.loc['a',['w','x']]  #返回‘a'行'w'、'x'列,这种用于选取行索引列索引已知

data.iat[1,1]  #选取第二行第二列,用于已知行、列位置的选取。

下面是简单的例子使用验证:

import pandas as pd
from pandas import Series, DataFrame
import numpy as np

data = DataFrame(np.arange(15).reshape(3,5),index=['one','two','three'],columns=['a','b','c','d','e'])

data
Out[7]: 
    a  b  c  d  e
one   0  1  2  3  4
two   5  6  7  8  9
three 10 11 12 13 14

#对列的操作方法有如下几种

data.icol(0)  #选取第一列
E:\Anaconda2\lib\site-packages\spyder\utils\ipython\start_kernel.py:1: FutureWarning: icol(i) is deprecated. Please use .iloc[:,i]
 # -*- coding: utf-8 -*-
Out[35]: 
one    0
two    5
three  10
Name: a, dtype: int32

data['a']
Out[8]: 
one    0
two    5
three  10
Name: a, dtype: int32

data.a
Out[9]: 
one    0
two    5
three  10
Name: a, dtype: int32

data[['a']]
Out[10]: 
    a
one   0
two   5
three 10

data.ix[:,[0,1,2]] #不知道列名只知道列的位置时
Out[13]: 
    a  b  c
one   0  1  2
two   5  6  7
three 10 11 12

data.ix[1,[0]] #选择第2行第1列的值
Out[14]: 
a  5
Name: two, dtype: int32

data.ix[[1,2],[0]]  #选择第2,3行第1列的值
Out[15]: 
    a
two   5
three 10

data.ix[1:3,[0,2]] #选择第2-4行第1、3列的值
Out[17]: 
    a  c
two   5  7
three 10 12

data.ix[1:2,2:4] #选择第2-3行,3-5(不包括5)列的值
Out[29]: 
   c d
two 7 8

data.ix[data.a>5,3]
Out[30]: 
three  13
Name: d, dtype: int32

data.ix[data.b>6,3:4] #选择'b'列中大于6所在的行中的第4列,有点拗口
Out[31]: 
    d
three 13

data.ix[data.a>5,2:4] #选择'a'列中大于5所在的行中的第3-5(不包括5)列
Out[32]: 
    c  d
three 12 13

data.ix[data.a>5,[2,2,2]] #选择'a'列中大于5所在的行中的第2列并重复3次
Out[33]: 
    c  c  c
three 12 12 12

#还可以行数或列数跟行名列名混着用
data.ix[1:3,['a','e']]
Out[24]: 
    a  e
two   5  9
three 10 14

data.ix['one':'two',[2,1]]
Out[25]: 
   c b
one 2 1
two 7 6

data.ix[['one','three'],[2,2]]
Out[26]: 
    c  c
one   2  2
three 12 12

data.ix['one':'three',['a','c']]
Out[27]: 
    a  c
one   0  2
two   5  7
three 10 12

data.ix[['one','one'],['a','e','d','d','d']]
Out[28]: 
   a e d d d
one 0 4 3 3 3
one 0 4 3 3 3

#对行的操作有如下几种:
data[1:2] #(不知道列索引时)选择第2行,不能用data[1],可以用data.ix[1]
Out[18]: 
   a b c d e
two 5 6 7 8 9

data.irow(1)  #选取第二行
Out[36]: 
a  5
b  6
c  7
d  8
e  9
Name: two, dtype: int32

data.ix[1]  #选择第2行
Out[20]: 
a  5
b  6
c  7
d  8
e  9
Name: two, dtype: int32


data['one':'two'] #当用已知的行索引时为前闭后闭区间,这点与切片稍有不同。
Out[22]: 
   a b c d e
one 0 1 2 3 4
two 5 6 7 8 9

data.ix[1:3] #选择第2到4行,不包括第4行,即前闭后开区间。
Out[23]: 
    a  b  c  d  e
two   5  6  7  8  9
three 10 11 12 13 14

data.ix[-1:] #取DataFrame中最后一行,返回的是DataFrame类型,**注意**这种取法是有使用条件的,只有当行索引不是数字索引时才可以使用,否则可以选用`data[-1:]`--返回DataFrame类型或`data.irow(-1)`--返回Series类型
Out[11]: 
    a  b  c  d  e
three 10 11 12 13 14

data[-1:] #跟上面一样,取DataFrame中最后一行,返回的是DataFrame类型
Out[12]: 
    a  b  c  d  e
three 10 11 12 13 14

data.ix[-1] #取DataFrame中最后一行,返回的是Series类型,这个一样,行索引不能是数字时才可以使用
Out[13]: 
a  10
b  11
c  12
d  13
e  14
Name: three, dtype: int32

data.tail(1)  #返回DataFrame中的最后一行
data.head(1)  #返回DataFrame中的第一行

最近处理数据时发现当pd.read_csv()数据时有时候会有读取到未命名的列,且该列也用不到,一般是索引列被换掉后导致的,有强迫症的看着难受,这时候dataframe.drop([columns,])是没法处理的,怎么办呢,

最笨的方法是直接给列索引重命名:

data6

    Unnamed: 0 high  symbol time
date        
2016-11-01 0  3317.4 IF1611 18:10:44.8
2016-11-01 1  3317.4 IF1611 06:01:04.5
2016-11-01 2  3317.4 IF1611 07:46:25.5
2016-11-01 3  3318.4 IF1611 09:30:04.0
2016-11-01 4  3321.8 IF1611 09:31:04.0

data6.columns = list('abcd')

data6

  a  b  c  d
date        
2016-11-01 0  3317.4 IF1611 18:10:44.8
2016-11-01 1  3317.4 IF1611 06:01:04.5
2016-11-01 2  3317.4 IF1611 07:46:25.5
2016-11-01 3  3318.4 IF1611 09:30:04.0
2016-11-01 4  3321.8 IF1611 09:31:04.0

重新命名后就可以用dataframe.drop([columns])来删除了,当然不用我这样全部给列名替换掉了,可以只是改变未命名的那个列,然后删除。不过这个用起来总是觉得有点low,有没有更好的方法呢,有,可以不去删除,直接:

data7 = data6.ix[:,1:]1

这样既不改变原有数据,也达到了删除神烦列,当然我这里时第0列删除,可以根据实际选择所在的列删除之,至于这个原理,可以看下前面的对列的操作。

github地址

到此这篇关于python中pandas库中DataFrame对行和列的操作使用方法示例的文章就介绍到这了,更多相关pandas库DataFrame行列操作内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
Python中的数学运算操作符使用进阶
Jun 20 Python
python检查URL是否正常访问的小技巧
Feb 25 Python
python脚本生成caffe train_list.txt的方法
Apr 27 Python
Python3 SSH远程连接服务器的方法示例
Dec 29 Python
django 简单实现登录验证给你
Nov 06 Python
python 实现简单的FTP程序
Dec 27 Python
Python版中国省市经纬度
Feb 11 Python
Python 从attribute到property详解
Mar 05 Python
python图片合成的示例
Nov 09 Python
Django用内置方法实现简单搜索功能的方法
Dec 18 Python
使用OpenCV实现人脸图像卡通化的示例代码
Jan 15 Python
PyQt 如何创建自定义QWidget
Mar 24 Python
Django 构建模板form表单的两种方法
Jun 14 #Python
Python Django搭建网站流程图解
Jun 13 #Python
Python xpath表达式如何实现数据处理
Jun 13 #Python
Python轻量级web框架bottle使用方法解析
Jun 13 #Python
PyInstaller运行原理及常用操作详解
Jun 13 #Python
Pandas缺失值2种处理方式代码实例
Jun 13 #Python
Python Django中间件使用原理及流程分析
Jun 13 #Python
You might like
提问的智慧
2006/10/09 PHP
php实现ping
2006/10/09 PHP
使用XDebug调试及单元测试覆盖率分析
2011/01/27 PHP
PHP获取指定函数定义在哪个文件中以及其所在的行号实例
2014/05/08 PHP
php一个文件搞定微信jssdk配置
2016/12/12 PHP
PHP Post获取不到非表单数据的问题解决办法
2018/02/27 PHP
WordPress JQuery处理沙发头像
2009/06/22 Javascript
js 省地市级联选择
2010/02/07 Javascript
jQuery 写的简单打字游戏可以提示正确和错误的次数
2014/07/01 Javascript
javascript图片预加载实例分析
2015/07/16 Javascript
使用Javascript写的2048小游戏
2015/11/25 Javascript
jquery过滤特殊字符',防sql注入的实现方法
2016/08/17 Javascript
浅析script标签中的defer与async属性
2016/11/30 Javascript
VUE中v-model和v-for指令详解
2017/06/23 Javascript
jQuery实现节点的追加、替换、删除、复制功能示例
2017/07/11 jQuery
Vue的路由及路由钩子函数的实现
2019/07/02 Javascript
Vue 实现点击空白处隐藏某节点的三种方式(指令、普通、遮罩)
2019/10/23 Javascript
[03:48]2014DOTA2 TI专访71DK夺冠不靠小组赛高排名
2014/07/11 DOTA
Python实现一个简单的MySQL类
2015/01/07 Python
python递归计算N!的方法
2015/05/05 Python
python+Django+apache的配置方法详解
2016/06/01 Python
python回调函数中使用多线程的方法
2017/12/25 Python
python获取命令行输入参数列表的实例代码
2018/06/23 Python
python中adb有什么功能
2020/06/07 Python
详解向scrapy中的spider传递参数的几种方法(2种)
2020/09/28 Python
利用三角函数在canvas上画虚线的方法
2018/01/11 HTML / CSS
美国眼镜在线零售商:Dualens
2019/12/07 全球购物
高级3D打印市场:Gambody
2019/12/26 全球购物
JDO的含义
2012/11/17 面试题
用友笔试题目
2016/10/25 面试题
会计毕业生求职简历的自我评价
2013/10/20 职场文书
销售副总经理岗位职责
2013/12/11 职场文书
办理居住证介绍信
2014/01/15 职场文书
海上钢琴师观后感
2015/06/03 职场文书
Nginx同一个域名配置多个项目的实现方法
2021/03/31 Servers
使用springboot暴露oracle数据接口的问题
2021/05/07 Oracle