python实现低通滤波器代码


Posted in Python onFebruary 26, 2020

低通滤波器实验代码,这是参考别人网上的代码,所以自己也分享一下,共同进步

# -*- coding: utf-8 -*-

import numpy as np
from scipy.signal import butter, lfilter, freqz
import matplotlib.pyplot as plt


def butter_lowpass(cutoff, fs, order=5):
 nyq = 0.5 * fs
 normal_cutoff = cutoff / nyq
 b, a = butter(order, normal_cutoff, btype='low', analog=False)
 return b, a


def butter_lowpass_filter(data, cutoff, fs, order=5):
 b, a = butter_lowpass(cutoff, fs, order=order)
 y = lfilter(b, a, data)
 return y # Filter requirements.


order = 6
fs = 30.0 # sample rate, Hz
cutoff = 3.667 # desired cutoff frequency of the filter, Hz # Get the filter coefficients so we can check its frequency response.
b, a = butter_lowpass(cutoff, fs, order) # Plot the frequency response.
w, h = freqz(b, a, worN=800)
plt.subplot(2, 1, 1)
plt.plot(0.5*fs*w/np.pi, np.abs(h), 'b')
plt.plot(cutoff, 0.5*np.sqrt(2), 'ko')
plt.axvline(cutoff, color='k')
plt.xlim(0, 0.5*fs)
plt.title("Lowpass Filter Frequency Response")
plt.xlabel('Frequency [Hz]')
plt.grid() # Demonstrate the use of the filter. # First make some data to be filtered.
T = 5.0 # seconds
n = int(T * fs) # total number of samples
t = np.linspace(0, T, n, endpoint=False) # "Noisy" data. We want to recover the 1.2 Hz signal from this.
data = np.sin(1.2*2*np.pi*t) + 1.5*np.cos(9*2*np.pi*t) + 0.5*np.sin(12.0*2*np.pi*t) # Filter the data, and plot both the original and filtered signals.
y = butter_lowpass_filter(data, cutoff, fs, order)
plt.subplot(2, 1, 2)
plt.plot(t, data, 'b-', label='data')
plt.plot(t, y, 'g-', linewidth=2, label='filtered data')
plt.xlabel('Time [sec]')
plt.grid()
plt.legend()
plt.subplots_adjust(hspace=0.35)
plt.show()

实际代码,没有整理,可以读取txt文本文件,然后进行低通滤波,并将滤波前后的波形和FFT变换都显示出来

# -*- coding: utf-8 -*-

import numpy as np
from scipy.signal import butter, lfilter, freqz
import matplotlib.pyplot as plt
import os


def butter_lowpass(cutoff, fs, order=5):
 nyq = 0.5 * fs
 normal_cutoff = cutoff / nyq
 b, a = butter(order, normal_cutoff, btype='low', analog=False)
 return b, a


def butter_lowpass_filter(data, cutoff, fs, order=5):
 b, a = butter_lowpass(cutoff, fs, order=order)
 y = lfilter(b, a, data)
 return y # Filter requirements.


order = 5
fs = 100000.0 # sample rate, Hz
cutoff = 1000 # desired cutoff frequency of the filter, Hz # Get the filter coefficients so we can check its frequency response.
# b, a = butter_lowpass(cutoff, fs, order) # Plot the frequency response.
# w, h = freqz(b, a, worN=1000)
# plt.subplot(3, 1, 1)
# plt.plot(0.5*fs*w/np.pi, np.abs(h), 'b')
# plt.plot(cutoff, 0.5*np.sqrt(2), 'ko')
# plt.axvline(cutoff, color='k')
# plt.xlim(0, 1000)
# plt.title("Lowpass Filter Frequency Response")
# plt.xlabel('Frequency [Hz]')
# plt.grid() # Demonstrate the use of the filter. # First make some data to be filtered.
# T = 5.0 # seconds
# n = int(T * fs) # total number of samples
# t = np.linspace(0, T, n, endpoint=False) # "Noisy" data. We want to recover the 1.2 Hz signal from this.
# # data = np.sin(1.2*2*np.pi*t) + 1.5*np.cos(9*2*np.pi*t) + 0.5*np.sin(12.0*2*np.pi*t) # Filter the data, and plot both the original and filtered signals.


path = "*****"

for file in os.listdir(path):
 if file.endswith("txt"):
  data=[]
  filePath = os.path.join(path, file)
  with open(filePath, 'r') as f:
   lines = f.readlines()[8:]
   for line in lines:
    # print(line)
    data.append(float(line)*100)
  # print(len(data))
  t1=[i*10 for i in range(len(data))]
  plt.subplot(231)
  # plt.plot(range(len(data)), data)
  plt.plot(t1, data, linewidth=2,label='original data')
  # plt.title('ori wave', fontsize=10, color='#F08080')
  plt.xlabel('Time [us]')
  plt.legend()

  # filter_data = data[30000:35000]
  # filter_data=data[60000:80000]
  # filter_data2=data[60000:80000]
  # filter_data = data[80000:100000]
  # filter_data = data[100000:120000]
  filter_data = data[120000:140000]

  filter_data2=filter_data
  t2=[i*10 for i in range(len(filter_data))]
  plt.subplot(232)
  plt.plot(t2, filter_data, linewidth=2,label='cut off wave before filter')
  plt.xlabel('Time [us]')
  plt.legend()
  # plt.title('cut off wave', fontsize=10, color='#F08080')

  # filter_data=zip(range(1,len(data),int(fs/len(data))),data)
  # print(filter_data)
  n1 = len(filter_data)
  Yamp1 = abs(np.fft.fft(filter_data) / (n1 / 2))
  Yamp1 = Yamp1[range(len(Yamp1) // 2)]
  # x_axis=range(0,n//2,int(fs/len
  # 计算最大赋值点频率
  max1 = np.max(Yamp1)
  max1_index = np.where(Yamp1 == max1)
  if (len(max1_index[0]) == 2):
   print((max1_index[0][0] )* fs / n1, (max1_index[0][1]) * fs / n1)
  else:
   Y_second = Yamp1
   Y_second = np.sort(Y_second)
   print(np.where(Yamp1 == max1)[0] * fs / n1,
     (np.where(Yamp1 == Y_second[-2])[0]) * fs / n1)
  N1 = len(Yamp1)
  # print(N1)
  x_axis1 = [i * fs / n1 for i in range(N1)]

  plt.subplot(233)
  plt.plot(x_axis1[:300], Yamp1[:300], linewidth=2,label='FFT data')
  plt.xlabel('Frequence [Hz]')
  # plt.title('FFT', fontsize=10, color='#F08080')
  plt.legend()
  # plt.savefig(filePath.replace("txt", "png"))
  # plt.close()
  # plt.show()



  Y = butter_lowpass_filter(filter_data2, cutoff, fs, order)
  n3 = len(Y)
  t3 = [i * 10 for i in range(n3)]
  plt.subplot(235)
  plt.plot(t3, Y, linewidth=2, label='cut off wave after filter')
  plt.xlabel('Time [us]')
  plt.legend()
  Yamp2 = abs(np.fft.fft(Y) / (n3 / 2))
  Yamp2 = Yamp2[range(len(Yamp2) // 2)]
  # x_axis = range(0, n // 2, int(fs / len(Yamp)))
  max2 = np.max(Yamp2)
  max2_index = np.where(Yamp2 == max2)
  if (len(max2_index[0]) == 2):
   print(max2, max2_index[0][0] * fs / n3, max2_index[0][1] * fs / n3)
  else:
   Y_second2 = Yamp2
   Y_second2 = np.sort(Y_second2)
   print((np.where(Yamp2 == max2)[0]) * fs / n3,
     (np.where(Yamp2 == Y_second2[-2])[0]) * fs / n3)
  N2=len(Yamp2)
  # print(N2)
  x_axis2 = [i * fs / n3 for i in range(N2)]

  plt.subplot(236)
  plt.plot(x_axis2[:300], Yamp2[:300],linewidth=2, label='FFT data after filter')
  plt.xlabel('Frequence [Hz]')
  # plt.title('FFT after low_filter', fontsize=10, color='#F08080')
  plt.legend()
  # plt.show()
  plt.savefig(filePath.replace("txt", "png"))
  plt.close()
  print('*'*50)

  # plt.subplot(3, 1, 2)
  # plt.plot(range(len(data)), data, 'b-', linewidth=2,label='original data')
  # plt.grid()
  # plt.legend()
  #
  # plt.subplot(3, 1, 3)
  # plt.plot(range(len(y)), y, 'g-', linewidth=2, label='filtered data')
  # plt.xlabel('Time')
  # plt.grid()
  # plt.legend()
  # plt.subplots_adjust(hspace=0.35)
  # plt.show()
  '''
  # Y_fft = Y[60000:80000]
  Y_fft = Y
  # Y_fft = Y[80000:100000]
  # Y_fft = Y[100000:120000]
  # Y_fft = Y[120000:140000]
  n = len(Y_fft)
  Yamp = np.fft.fft(Y_fft)/(n/2)
  Yamp = Yamp[range(len(Yamp)//2)]

  max = np.max(Yamp)
  # print(max, np.where(Yamp == max))

  Y_second = Yamp
  Y_second=np.sort(Y_second)
  print(float(np.where(Yamp == max)[0])* fs / len(Yamp),float(np.where(Yamp==Y_second[-2])[0])* fs / len(Yamp))
  # print(float(np.where(Yamp == max)[0]) * fs / len(Yamp))
  '''

补充拓展:浅谈opencv的理想低通滤波器和巴特沃斯低通滤波器

低通滤波器

1.理想的低通滤波器

python实现低通滤波器代码

其中,D0表示通带的半径。D(u,v)的计算方式也就是两点间的距离,很简单就能得到。

python实现低通滤波器代码

使用低通滤波器所得到的结果如下所示。低通滤波器滤除了高频成分,所以使得图像模糊。由于理想低通滤波器的过度特性过于急峻,所以会产生了振铃现象。

python实现低通滤波器代码

2.巴特沃斯低通滤波器

python实现低通滤波器代码

同样的,D0表示通带的半径,n表示的是巴特沃斯滤波器的次数。随着次数的增加,振铃现象会越来越明显。

python实现低通滤波器代码

void ideal_Low_Pass_Filter(Mat src){
	Mat img;
	cvtColor(src, img, CV_BGR2GRAY);
	imshow("img",img);
	//调整图像加速傅里叶变换
	int M = getOptimalDFTSize(img.rows);
	int N = getOptimalDFTSize(img.cols);
	Mat padded;
	copyMakeBorder(img, padded, 0, M - img.rows, 0, N - img.cols, BORDER_CONSTANT, Scalar::all(0));
	//记录傅里叶变换的实部和虚部
	Mat planes[] = { Mat_<float>(padded), Mat::zeros(padded.size(), CV_32F) };
	Mat complexImg;
	merge(planes, 2, complexImg);
	//进行傅里叶变换
	dft(complexImg, complexImg);
	//获取图像
	Mat mag = complexImg;
	mag = mag(Rect(0, 0, mag.cols & -2, mag.rows & -2));//这里为什么&上-2具体查看opencv文档
	//其实是为了把行和列变成偶数 -2的二进制是11111111.......10 最后一位是0
	//获取中心点坐标
	int cx = mag.cols / 2;
	int cy = mag.rows / 2;
	//调整频域
	Mat tmp;
	Mat q0(mag, Rect(0, 0, cx, cy));
	Mat q1(mag, Rect(cx, 0, cx, cy));
	Mat q2(mag, Rect(0, cy, cx, cy));
	Mat q3(mag, Rect(cx, cy, cx, cy));
 
	q0.copyTo(tmp);
	q3.copyTo(q0);
	tmp.copyTo(q3);
 
	q1.copyTo(tmp);
	q2.copyTo(q1);
	tmp.copyTo(q2);
	//Do为自己设定的阀值具体看公式
	double D0 = 60;
	//处理按公式保留中心部分
	for (int y = 0; y < mag.rows; y++){
		double* data = mag.ptr<double>(y);
		for (int x = 0; x < mag.cols; x++){
			double d = sqrt(pow((y - cy),2) + pow((x - cx),2));
			if (d <= D0){
				
			}
			else{
				data[x] = 0;
			}
		}
	}
	//再调整频域
	q0.copyTo(tmp);
	q3.copyTo(q0);
	tmp.copyTo(q3);
	q1.copyTo(tmp);
	q2.copyTo(q1);
	tmp.copyTo(q2);
	//逆变换
	Mat invDFT, invDFTcvt;
	idft(mag, invDFT, DFT_SCALE | DFT_REAL_OUTPUT); // Applying IDFT
	invDFT.convertTo(invDFTcvt, CV_8U);
	imshow("理想低通滤波器", invDFTcvt);
}
 
void Butterworth_Low_Paass_Filter(Mat src){
	int n = 1;//表示巴特沃斯滤波器的次数
	//H = 1 / (1+(D/D0)^2n)
	Mat img;
	cvtColor(src, img, CV_BGR2GRAY);
	imshow("img", img);
	//调整图像加速傅里叶变换
	int M = getOptimalDFTSize(img.rows);
	int N = getOptimalDFTSize(img.cols);
	Mat padded;
	copyMakeBorder(img, padded, 0, M - img.rows, 0, N - img.cols, BORDER_CONSTANT, Scalar::all(0));
 
	Mat planes[] = { Mat_<float>(padded), Mat::zeros(padded.size(), CV_32F) };
	Mat complexImg;
	merge(planes, 2, complexImg);
 
	dft(complexImg, complexImg);
 
	Mat mag = complexImg;
	mag = mag(Rect(0, 0, mag.cols & -2, mag.rows & -2));
 
	int cx = mag.cols / 2;
	int cy = mag.rows / 2;
 
	Mat tmp;
	Mat q0(mag, Rect(0, 0, cx, cy));
	Mat q1(mag, Rect(cx, 0, cx, cy));
	Mat q2(mag, Rect(0, cy, cx, cy));
	Mat q3(mag, Rect(cx, cy, cx, cy));
 
	q0.copyTo(tmp);
	q3.copyTo(q0);
	tmp.copyTo(q3);
 
	q1.copyTo(tmp);
	q2.copyTo(q1);
	tmp.copyTo(q2);
 
	double D0 = 100;
 
	for (int y = 0; y < mag.rows; y++){
		double* data = mag.ptr<double>(y);
		for (int x = 0; x < mag.cols; x++){
			//cout << data[x] << endl;
			double d = sqrt(pow((y - cy), 2) + pow((x - cx), 2));
			//cout << d << endl;
			double h = 1.0 / (1 + pow(d / D0, 2 * n));
			if (h <= 0.5){
				data[x] = 0;
			}
			else{
				//data[x] = data[x]*0.5;
				//cout << h << endl;
			}
			
			//cout << data[x] << endl;
		}
	}
	q0.copyTo(tmp);
	q3.copyTo(q0);
	tmp.copyTo(q3);
	q1.copyTo(tmp);
	q2.copyTo(q1);
	tmp.copyTo(q2);
	//逆变换
	Mat invDFT, invDFTcvt;
	idft(complexImg, invDFT, DFT_SCALE | DFT_REAL_OUTPUT); // Applying IDFT
	invDFT.convertTo(invDFTcvt, CV_8U);
	imshow("巴特沃斯低通滤波器", invDFTcvt);
}

以上这篇python实现低通滤波器代码就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python 文件和输入输出小结
Oct 09 Python
Python实现的检测网站挂马程序
Nov 30 Python
使用Python装饰器在Django框架下去除冗余代码的教程
Apr 16 Python
Python基于分水岭算法解决走迷宫游戏示例
Sep 26 Python
利用Python2下载单张图片与爬取网页图片实例代码
Dec 25 Python
python实现pdf转换成word/txt纯文本文件
Jun 07 Python
python一行sql太长折成多行并且有多个参数的方法
Jul 19 Python
Python Django切换MySQL数据库实例详解
Jul 16 Python
Django mysqlclient安装和使用详解
Sep 17 Python
python 实现简易的记事本
Nov 30 Python
Python从MySQL数据库中面抽取试题,生成试卷
Jan 14 Python
请求模块urllib之PYTHON爬虫的基本使用
Apr 08 Python
Python解释器及PyCharm工具安装过程
Feb 26 #Python
Python基础之列表常见操作经典实例详解
Feb 26 #Python
Python TKinter如何自动关闭主窗口
Feb 26 #Python
Flask和pyecharts实现动态数据可视化
Feb 26 #Python
Python图像处理库PIL的ImageEnhance模块使用介绍
Feb 26 #Python
Python基础之字符串常见操作经典实例详解
Feb 26 #Python
浅析python表达式4+0.5值的数据类型
Feb 26 #Python
You might like
PHP脚本数据库功能详解(下)
2006/10/09 PHP
PHP APC缓存配置、使用详解
2014/03/06 PHP
基于PHP实现的事件机制实例分析
2015/06/18 PHP
javascript 函数及作用域总结介绍
2013/11/12 Javascript
node.js中的fs.rmdirSync方法使用说明
2014/12/16 Javascript
AngularJS基础 ng-hide 指令用法及示例代码
2016/08/01 Javascript
js 创建对象 经典模式全面了解
2016/08/16 Javascript
EasyUI创建对话框的两种方式
2016/08/23 Javascript
详细谈谈AngularJS的子级作用域问题
2016/09/05 Javascript
JavaScript禁止微信浏览器下拉回弹效果
2017/05/16 Javascript
jquery+php后台实现省市区联动功能示例
2019/05/23 jQuery
angular使用md5,CryptoJS des加密的方法
2019/06/03 Javascript
JavaScript创建、读取和删除cookie
2019/09/03 Javascript
python基础教程之数字处理(math)模块详解
2014/03/25 Python
Win7上搭建Cocos2d-x 3.1.1开发环境
2014/07/03 Python
跟老齐学Python之永远强大的函数
2014/09/14 Python
简单解决Python文件中文编码问题
2015/11/22 Python
pandas 获取季度,月度,年度首尾日期的方法
2018/04/11 Python
Python脚本完成post接口测试的实例
2018/12/17 Python
总结Python图形用户界面和游戏开发知识点
2019/05/22 Python
解决Python内层for循环如何break出外层的循环的问题
2019/06/24 Python
flask 实现上传图片并缩放作为头像的例子
2020/01/09 Python
Python+OpenCV检测灯光亮点的实现方法
2020/11/02 Python
Stylenanda中文站:韩国一线网络服装品牌
2016/12/22 全球购物
Chain Reaction Cycles俄罗斯:世界上最大的在线自行车商店
2019/08/27 全球购物
失业者真诚求职信范文
2013/12/25 职场文书
《童年的发现》教学反思
2014/02/14 职场文书
我的梦想演讲稿500字
2014/08/21 职场文书
幼儿园小班个人工作总结
2015/02/12 职场文书
2015年党务公开工作总结
2015/05/19 职场文书
婚礼上证婚人致辞
2015/07/28 职场文书
医院病假条范文
2015/08/17 职场文书
2016年小学“我们的节日·中秋节”活动总结
2016/04/05 职场文书
如何理解及使用Python闭包
2021/06/01 Python
Java8 CompletableFuture 异步回调
2022/04/28 Java/Android
SQL Server中使用表变量和临时表
2022/05/20 SQL Server