Pytorch 的损失函数Loss function使用详解


Posted in Python onJanuary 02, 2020

1.损失函数

损失函数,又叫目标函数,是编译一个神经网络模型必须的两个要素之一。另一个必不可少的要素是优化器。

损失函数是指用于计算标签值和预测值之间差异的函数,在机器学习过程中,有多种损失函数可供选择,典型的有距离向量,绝对值向量等。

损失Loss必须是标量,因为向量无法比较大小(向量本身需要通过范数等标量来比较)。

损失函数一般分为4种,平方损失函数,对数损失函数,HingeLoss 0-1 损失函数,绝对值损失函数。

我们先定义两个二维数组,然后用不同的损失函数计算其损失值。

import torch
from torch.autograd import Variable
import torch.nn as nn
import torch.nn.functional as F
sample = Variable(torch.ones(2,2))
a=torch.Tensor(2,2)
a[0,0]=0
a[0,1]=1
a[1,0]=2
a[1,1]=3
target = Variable (a)

sample 的值为:[[1,1],[1,1]]。

target 的值为:[[0,1],[2,3]]。

1 nn.L1Loss

L1Loss 计算方法很简单,取预测值和真实值的绝对误差的平均数即可。

criterion = nn.L1Loss()
loss = criterion(sample, target)
print(loss)

最后结果是:1。

它的计算逻辑是这样的:

先计算绝对差总和:|0-1|+|1-1|+|2-1|+|3-1|=4;

然后再平均:4/4=1。

2 nn.SmoothL1Loss

SmoothL1Loss 也叫作 Huber Loss,误差在 (-1,1) 上是平方损失,其他情况是 L1 损失。

criterion = nn.SmoothL1Loss()
loss = criterion(sample, target)
print(loss)

最后结果是:0.625。

3 nn.MSELoss

平方损失函数。其计算公式是预测值和真实值之间的平方和的平均数。

Pytorch 的损失函数Loss function使用详解

criterion = nn.MSELoss()
loss = criterion(sample, target)
print(loss)

最后结果是:1.5。

4 nn.CrossEntropyLoss

交叉熵损失函数

花了点时间才能看懂它。

首先,先看几个例子,

需要注意的是,target输入必须是 tensor long 类型(int64位)

import torch 
# cross entropy loss
pred = np.array([[0.8, 2.0, 1.2]])
CELoss = torch.nn.CrossEntropyLoss()
for k in range(3):  
  target = np.array([k])
  loss2 = CELoss(torch.from_numpy(pred), torch.from_numpy(target).long())
  print(loss2)

Output:

tensor(1.7599, dtype=torch.float64)
tensor(0.5599, dtype=torch.float64)
tensor(1.3599, dtype=torch.float64)

如果,改成pred = np.array([[0.8, 2.0, 2.0]]),输出,

tensor(2.0334, dtype=torch.float64)
tensor(0.8334, dtype=torch.float64)
tensor(0.8334, dtype=torch.float64)

后面两个输出一样。

先看它的公式,就明白怎么回事了:

Pytorch 的损失函数Loss function使用详解

(这个应该是有两个标准交叉熵组成了,后面一个算是预测错误的交叉熵?反正,数值会变大了)

使用 numpy来实现是这样的:

pred = np.array([[0.8, 2.0, 2.0]])
nClass = pred.shape[1]
target = np.array([0])

def labelEncoder(y):
  tmp = np.zeros(shape = (y.shape[0], nClass))
  for i in range(y.shape[0]):
    tmp[i][y[i]] = 1
  return tmp
def crossEntropy(pred, target):
  target = labelEncoder(target)
  pred = softmax(pred)
  H = -np.sum(target*np.log(pred))
  return H
H = crossEntropy(pred, target)

输出:

2.0334282107562287

对上了!

再回头看看,公式

Pytorch 的损失函数Loss function使用详解

这里,就是class 就是索引,(调用 nn.CrossEntropyLoss需要注意),这里把Softmax求p 和 ylog(p)写在一起,一开始还没反应过来。

5.nn.BCELoss

二分类交叉熵的含义其实在交叉熵上面提过,就是把{y, 1-y}当做两项分布,计算出来的loss就比交叉熵大(也就是包含的信息更多了,因为包含了正类和负类的loss了)。

Pytorch 的损失函数Loss function使用详解

最后结果是:-13.8155。

6 nn.NLLLoss

负对数似然损失函数(Negative Log Likelihood)

Pytorch 的损失函数Loss function使用详解

在前面接上一个 LogSoftMax 层就等价于交叉熵损失了。注意这里的 xlabel 和上个交叉熵损失里的不一样,这里是经过 log 运算后的数值。这个损失函数一般也是用在图像识别模型上。

NLLLoss 的 输入 是一个对数概率向量和一个目标标签(不需要是one-hot编码形式的). 它不会为我们计算对数概率. 适合网络的最后一层是log_softmax. 损失函数 nn.CrossEntropyLoss() 与 NLLLoss() 相同, 唯一的不同是它为我们去做 softmax.

Nn.NLLLoss 和 nn.CrossEntropyLoss 的功能是非常相似的!通常都是用在多分类模型中,实际应用中我们一般用 NLLLoss 比较多。

7 nn.NLLLoss2d

和上面类似,但是多了几个维度,一般用在图片上。

input, (N, C, H, W)

target, (N, H, W)

比如用全卷积网络做分类时,最后图片的每个点都会预测一个类别标签。

criterion = nn.NLLLoss2d()
loss = criterion(sample, target)
print(loss)

最后结果是:报错,看来不能直接这么用!

8 .BCEWithLogitsLoss 与 MultilabelSoftMarginLoss

BCEWithLogitsLoss :

Pytorch 的损失函数Loss function使用详解

这里,主要x,y的顺序,x为predict的输出(还没有sigmoid);y为真实标签,一般是[0,1],但是真实标签也可以是概率表示,如[0.1, 0.9].

可以看出,这里与 BCELoss相比,它帮你做sigmoid 操作,不需要你输出时加激活函数。

MultiLabelSoftMarginLoss :

Pytorch 的损失函数Loss function使用详解

可以看出, 后者是前者权值为1时的特例。

import torch 
from torch.autograd import Variable
from torch import nn
x = Variable(torch.randn(10, 3))
y = Variable(torch.FloatTensor(10, 3).random_(2))

# double the loss for class 1
class_weight = torch.FloatTensor([1.0, 2.0, 1.0])
# double the loss for last sample
element_weight = torch.FloatTensor([1.0]*9 + [2.0]).view(-1, 1)
element_weight = element_weight.repeat(1, 3)

bce_criterion = nn.BCEWithLogitsLoss(weight=None, reduce=False)
multi_criterion = nn.MultiLabelSoftMarginLoss(weight=None, reduce=False)

bce_criterion_class = nn.BCEWithLogitsLoss(weight=class_weight, reduce=False)
multi_criterion_class = nn.MultiLabelSoftMarginLoss(weight=class_weight, 
                          reduce=False)

bce_criterion_element = nn.BCEWithLogitsLoss(weight=element_weight, reduce=False)
multi_criterion_element = nn.MultiLabelSoftMarginLoss(weight=element_weight, 
                           reduce=False)

bce_loss = bce_criterion(x, y)
multi_loss = multi_criterion(x, y)

bce_loss_class = bce_criterion_class(x, y)
multi_loss_class = multi_criterion_class(x, y)

print(bce_loss_class)
print(multi_loss_class)

print('bce_loss',bce_loss)
print('bce loss mean', torch.mean(bce_loss, dim = 1))
print('multi_loss', multi_loss)

9.比较BCEWithLogitsLoss和TensorFlow的 sigmoid_cross_entropy_with_logits;softmax_cross_entropy_with_logits

pytorch BCEwithLogitsLoss 参考前面8的介绍。

from torch import nn
from torch.autograd import Variable
bce_criterion = nn.BCEWithLogitsLoss(weight = None, reduce = False)
y = Variable(torch.tensor([[1,0,0],[0,1,0],[0,0,1],[1,1,0],[0,1,0]],dtype=torch.float64))
logits = Variable(torch.tensor([[12,3,2],[3,10,1],[1,2,5],[4,6.5,1.2],[3,6,1]],dtype=torch.float64))
bce_criterion(logits, y)

result:

tensor([[6.1442e-06, 3.0486e+00, 2.1269e+00],
    [3.0486e+00, 4.5399e-05, 1.3133e+00],
    [1.3133e+00, 2.1269e+00, 6.7153e-03],
    [1.8150e-02, 1.5023e-03, 1.4633e+00],
    [3.0486e+00, 2.4757e-03, 1.3133e+00]], dtype=torch.float64)

如果使用 TensorFlow的sigmoid_cross_entropy_with_logits,

y = np.array([[1,0,0],[0,1,0],[0,0,1],[1,1,0],[0,1,0]])
logits = np.array([[12,3,2],[3,10,1],[1,2,5],[4,6.5,1.2],[3,6,1]]).astype(np.float32)
       
sess =tf.Session()
y = np.array(y).astype(np.float32) # labels是float64的数据类型
E2 = sess.run(tf.nn.sigmoid_cross_entropy_with_logits(labels=y,logits=logits))
print(E2)

result

[[6.1441933e-06 3.0485873e+00 2.1269281e+00]
 [3.0485873e+00 4.5398901e-05 1.3132617e+00]
 [1.3132617e+00 2.1269281e+00 6.7153485e-03]
 [1.8149929e-02 1.5023102e-03 1.4632825e+00]
 [3.0485873e+00 2.4756852e-03 1.3132617e+00]]

从结果来看,两个是等价的。

其实,两个损失函数都是,先预测结果sigmoid,再求交叉熵。

Keras binary_crossentropy 也是调用 Tf sigmoid_cross_entropy_with_logits.
keras binary_crossentropy 源码;

def loss_fn(y_true, y_pred, e=0.1):
  bce_loss = K.binary_crossentropy(y_true, y_pred)
  return K.mean(bce_loss, axis = -1)

y = K.variable([[1,0,0],[0,1,0],[0,0,1],[1,1,0],[0,1,0]])
logits = K.variable([[12,3,2],[3,10,1],[1,2,5],[4,6.5,1.2],[3,6,1]])
res = loss_fn(logits, y)
print(K.get_value(res))

from keras.losses import binary_crossentropy
print(K.get_value(binary_crossentropy(logits, y)))

result:

[-31.59192  -26.336359  -5.1384177 -38.72286  -5.0798492]
[-31.59192  -26.336359  -5.1384177 -38.72286  -5.0798492]

同样,如果是softmax_cross_entropy_with_logits的话,

y = np.array([[1,0,0],[0,1,0],[0,0,1],[1,1,0],[0,1,0]])
logits = np.array([[12,3,2],[3,10,1],[1,2,5],[4,6.5,1.2],[3,6,1]]).astype(np.float32)
       
sess =tf.Session()
y = np.array(y).astype(np.float32) # labels是float64的数据类型
E2 = sess.run(tf.nn.softmax_cross_entropy_with_logits(labels=y,
                                   logits=logits))
print(E2)

result:

[1.6878611e-04 1.0346780e-03 6.5883912e-02 2.6669841e+00 5.4985214e-02]

发现维度都已经变了,这个是 N*1维了。

即使,把上面sigmoid_cross_entropy_with_logits的结果维度改变,也是 [1.725174 1.4539648 1.1489683 0.49431157 1.4547749 ],两者还是不一样。

关于选用softmax_cross_entropy_with_logits还是sigmoid_cross_entropy_with_logits,使用softmax,精度会更好,数值稳定性更好,同时,会依赖超参数。

2 其他不常用loss

函数 作用
AdaptiveLogSoftmaxWithLoss 用于不平衡类

以上这篇Pytorch 的损失函数Loss function使用详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python实现简单状态框架的方法
Mar 19 Python
python实现mysql的读写分离及负载均衡
Feb 04 Python
Django自定义用户认证示例详解
Mar 14 Python
Python cookbook(数据结构与算法)将名称映射到序列元素中的方法
Mar 22 Python
pandas 取出表中一列数据所有的值并转换为array类型的方法
Apr 11 Python
Django添加favicon.ico图标的示例代码
Aug 07 Python
Django使用paginator插件实现翻页功能的实例
Oct 24 Python
django中使用Celery 布式任务队列过程详解
Jul 29 Python
详解从Django Allauth中进行登录改造小结
Dec 18 Python
打印tensorflow恢复模型中所有变量与操作节点方式
May 26 Python
Python机器学习之PCA降维算法详解
May 19 Python
如何使用Tkinter进行窗口的管理与设置
Jun 30 Python
Python面向对象封装操作案例详解 II
Jan 02 #Python
Python实现搜索算法的实例代码
Jan 02 #Python
python 实现从高分辨图像上抠取图像块
Jan 02 #Python
python base64库给用户名或密码加密的流程
Jan 02 #Python
python文件处理fileinput使用方法详解
Jan 02 #Python
linux 下python多线程递归复制文件夹及文件夹中的文件
Jan 02 #Python
Pytorch的mean和std调查实例
Jan 02 #Python
You might like
PHP 表单提交给自己
2008/07/24 PHP
laravel 操作数据库常用函数的返回值方法
2019/10/11 PHP
PHP 文件写入和读取操作实例详解【必看篇】
2019/11/04 PHP
js压缩工具 yuicompressor 使用教程
2010/03/31 Javascript
jquery.validate使用攻略 第一部
2010/07/01 Javascript
浅析JavaScript中两种类型的全局对象/函数
2013/12/05 Javascript
Node.js开源应用框架HapiJS介绍
2015/01/14 Javascript
jquery ajax双击div可直接修改div中的内容
2016/03/04 Javascript
AngularJS 面试题集锦
2016/09/06 Javascript
jQuery模拟窗口抖动效果
2017/03/15 Javascript
JavaScript数据结构之二叉树的遍历算法示例
2017/04/13 Javascript
JavaScript 跨域之POST实现方法
2018/05/07 Javascript
vue2.0$nextTick监听数据渲染完成之后的回调函数方法
2018/09/11 Javascript
JavaScript递归函数定义与用法实例分析
2019/01/24 Javascript
小程序rich-text组件如何改变内部img图片样式的方法
2019/05/22 Javascript
微信小程序获取复选框全选反选选中的值(实例代码)
2019/12/17 Javascript
微信小程序实用代码段(收藏版)
2019/12/17 Javascript
JS数组push、unshift、pop、shift方法的实现与使用方法示例
2020/04/29 Javascript
python利用hook技术破解https的实例代码
2013/03/25 Python
使用python和pygame绘制繁花曲线的方法
2018/02/24 Python
Python3匿名函数用法示例
2018/07/25 Python
Python实现批量执行同目录下的py文件方法
2019/01/11 Python
深度辨析Python的eval()与exec()的方法
2019/03/26 Python
pandas数据筛选和csv操作的实现方法
2019/07/02 Python
jupyter 使用Pillow包显示图像时inline显示方式
2020/04/24 Python
python爬虫使用requests发送post请求示例详解
2020/08/05 Python
全球虚拟主机商:HostGator
2017/02/06 全球购物
台湾团购、宅配和优惠券:17Life
2017/08/14 全球购物
介绍一下JMS编程步骤
2015/09/22 面试题
爱耳日活动总结
2014/04/30 职场文书
高中生第一学年自我鉴定2015
2014/09/28 职场文书
2014年施工员工作总结
2014/11/18 职场文书
2014年企业党建工作总结
2014/12/18 职场文书
同乡会致辞
2015/07/30 职场文书
职场中的你,辞职信写对了吗?
2019/06/26 职场文书
CSS filter 有什么神奇用途
2021/05/25 HTML / CSS