将Pytorch模型从CPU转换成GPU的实现方法


Posted in Python onAugust 19, 2019

最近将Pytorch程序迁移到GPU上去的一些工作和思考

环境:Ubuntu 16.04.3

Python版本:3.5.2

Pytorch版本:0.4.0

0. 序言

大家知道,在深度学习中使用GPU来对模型进行训练是可以通过并行化其计算来提高运行效率,这里就不多谈了。

最近申请到了实验室的服务器来跑程序,成功将我简陋的程序改成了“高大上”GPU版本。

看到网上总体来说少了很多介绍,这里决定将我的一些思考和工作记录下来。

1. 如何进行迁移

由于我使用的是Pytorch写的模型,网上给出了一个非常简单的转换方式: 对模型和相应的数据进行.cuda()处理。通过这种方式,我们就可以将内存中的数据复制到GPU的显存中去。从而可以通过GPU来进行运算了。

网上说的非常简单,但是实际使用过程中还是遇到了一些疑惑。下面分数据和模型两方面的迁移来进行说明介绍。

1.1 判定使用GPU

下载了对应的GPU版本的Pytorch之后,要确保GPU是可以进行使用的,通过torch.cuda.is_available()的返回值来进行判断。返回True则具有能够使用的GPU。

通过torch.cuda.device_count()可以获得能够使用的GPU数量。其他就不多赘述了。

常常通过如下判定来写可以跑在GPU和CPU上的通用模型:

if torch.cuda.is_available():
  ten1 = ten1.cuda()
  MyModel = MyModel.cuda()

2. 对应数据的迁移

数据方面常用的主要是两种 —— Tensor和Variable。实际上这两种类型是同一个东西,因为Variable实际上只是一个容器,这里先视其不同。

2.1 将Tensor迁移到显存中去

不论是什么类型的Tensor(FloatTensor或者是LongTensor等等),一律直接使用方法.cuda()即可。

例如:

ten1 = torch.FloatTensor(2)
>>>> 6.1101e+24
   4.5659e-41
   [torch.FloatTensor of size 2]

ten1_cuda = ten1.cuda()
>>>>  6.1101e+24
    4.5659e-41
    [torch.cuda.FloatTensor of size 2 (GPU 0)]

其数据类型会由torch.FloatTensor变为torch.cuda.FloatTensor (GPU 0)这样代表这个数据现在存储在

GPU 0的显存中了。

如果要将显存中的数据复制到内存中,则对cuda数据类型使用.cpu()方法即可。

2.2 将Variable迁移到显存中去

在模型中,我们最常使用的是Variable这个容器来装载使用数据。主要是由于Variable可以进行反向传播来进行自动求导。

同样地,要将Variable迁移到显存中,同样只需要使用.cuda()即可实现。

这里有一个小疑问,对Variable直接使用.cuda和对Tensor进行.cuda然后再放置到Variable中结果是否一致呢。答案是肯定的。

ten1 = torch.FloatTensor(2)
>>> 6.1101e+24
   4.5659e-41
  [torch.FloatTensor of size 2]

ten1_cuda = ten1.cuda()
>>>> 6.1101e+24
   4.5659e-41
  [torch.cuda.FloatTensor of size 2 (GPU 0)]

V1_cpu = autograd.Variable(ten1)
>>>> Variable containing:
   6.1101e+24
   4.5659e-41
  [torch.FloatTensor of size 2]

V2 = autograd.Variable(ten1_cuda)
>>>> Variable containing:
   6.1101e+24
   4.5659e-41
  [torch.cuda.FloatTensor of size 2 (GPU 0)]

V1 = V1_cpu.cuda()
>>>> Variable containing:
   6.1101e+24
   4.5659e-41
  [torch.cuda.FloatTensor of size 2 (GPU 0)]

最终我们能发现他们都能够达到相同的目的,但是他们完全一样了吗?我们使用V1 is V2发现,结果是否定的。

对于V1,我们是直接对Variable进行操作的,这样子V1的.grad_fn中会记录下创建的方式。因此这二者并不是完全相同的。

2.3 数据迁移小结

.cuda()操作默认使用GPU 0也就是第一张显卡来进行操作。当我们想要存储在其他显卡中时可以使用.cuda(<显卡号数>)来将数据存储在指定的显卡中。还有很多种方式,具体参考官方文档。

对于不同存储位置的变量,我们是不可以对他们直接进行计算的。存储在不同位置中的数据是不可以直接进行交互计算的。

换句话说也就是上面例子中的torch.FloatTensor是不可以直接与torch.cuda.FloatTensor进行基本运算的。位于不同GPU显存上的数据也是不能直接进行计算的。

对于Variable,其实就仅仅是一种能够记录操作信息并且能够自动求导的容器,实际上的关键信息并不在Variable本身,而更应该侧重于Variable中存储的data。

3. 模型迁移

模型的迁移这里指的是torch.nn下面的一些网络模型以及自己创建的模型迁移到GPU上去。

上面讲了使用.cuda()即可将数据从内存中移植到显存中去。

对于模型来说,也是同样的方式,我们使用.cuda来将网络放到显存上去。

3.1 torch.nn下的基本模型迁移

这里使用基本的单层感知机来进行举例(线性模型)。

data1 = torch.FloatTensor(2)
data2 = data1.cuda

# 创建一个输入维度为2,输出维度为2的单层神经网络
linear = torch.nn.Linear(2, 2)
>>>> Linear(in_features=2, out_features=2)

linear_cuda = linear.cuda()
>>>> Linear(in_features=2, out_features=2)

我们很惊奇地发现对于模型来说,不像数据那样使用了.cuda()之后会改变其的数据类型。模型看起来没有任何的变化。

但是他真的没有改变吗。

我们将data1投入linear_cuda中去可以发现,系统会报错,而将.cuda之后的data2投入linear_cuda才能正常工作。并且输出的也是具有cuda的数据类型。

那是怎么一回事呢?

这是因为这些所谓的模型,其实也就是对输入参数做了一些基本的矩阵运算。所以我们对模型.cuda()实际上也相当于将模型使用到的参数存储到了显存上去。

对于上面的例子,我们可以通过观察参数来发现区别所在。

linear.weight
>>>> Parameter containing:
  -0.6847 0.2149
  -0.5473 0.6863
  [torch.FloatTensor of size 2x2]

linear_cuda.weight
>>>> Parameter containing:
  -0.6847 0.2149
  -0.5473 0.6863
  [torch.cuda.FloatTensor of size 2x2 (GPU 0)]

3.2 自己模型的迁移

对于自己创建的模型类,由于继承了torch.nn.Module,则可同样使用.cuda()来将模型中用到的所有参数都存储到显存中去。

这里笔者曾经有一个疑问:当我们对模型存储到显存中去之后,那么这个模型中的方法后面所创建出来的Tensor是不是都会默认变成cuda的数据类型。答案是否定的。具体操作留给读者自己去实现。

3.3 模型小结

对于模型而言,我们可以将其看做是一种类似于Variable的容器。我们对它进行.cuda()处理,是将其中的参数放到显存上去(因为实际使用的时候也是通过这些参数做运算)。

4. 总结

Pytorch使用起来直接简单,GPU的使用也是简单明了。然而对于多GPU和CPU的协同使用则还是有待提高。

以上这篇将Pytorch模型从CPU转换成GPU的实现方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python通过正则表达式选取callback的方法
Jul 18 Python
在cmder下安装ipython以及环境的搭建
Oct 19 Python
Django实现微信小程序的登录验证功能并维护登录态
Jul 04 Python
Python 绘制酷炫的三维图步骤详解
Jul 12 Python
Python切图九宫格的实现方法
Oct 10 Python
深入浅析Python 中的sklearn模型选择
Oct 12 Python
将python依赖包打包成window下可执行文件bat方式
Dec 26 Python
Pytorch模型转onnx模型实例
Jan 15 Python
python 给图像添加透明度(alpha通道)
Apr 09 Python
解决jupyter notebook import error但是命令提示符import正常的问题
Apr 15 Python
Pytorch - TORCH.NN.INIT 参数初始化的操作
Feb 27 Python
python自动化之如何利用allure生成测试报告
May 02 Python
pytorch 使用单个GPU与多个GPU进行训练与测试的方法
Aug 19 #Python
在pytorch中为Module和Tensor指定GPU的例子
Aug 19 #Python
pytorch使用指定GPU训练的实例
Aug 19 #Python
关于pytorch多GPU训练实例与性能对比分析
Aug 19 #Python
pytorch 更改预训练模型网络结构的方法
Aug 19 #Python
pytorch打印网络结构的实例
Aug 19 #Python
pytorch索引查找 index_select的例子
Aug 18 #Python
You might like
echo, print, printf 和 sprintf 区别
2006/12/06 PHP
php抽奖小程序的实现代码
2013/06/18 PHP
thinkphp验证码显示不出来的解决方法
2014/03/29 PHP
php更新mysql后获取改变行数的方法
2014/12/25 PHP
Yii rules常用规则示例
2016/03/15 PHP
PHP基于SPL实现的迭代器模式示例
2018/04/22 PHP
关于js中for in的缺陷浅析
2013/12/02 Javascript
jQuery通过点击行来删除HTML表格行的实现示例
2014/09/10 Javascript
JavaScript实现图片滑动切换的代码示例分享
2016/03/06 Javascript
jquery遍历json对象集合详解
2016/05/18 Javascript
jQuery实现的导航下拉菜单效果
2016/07/04 Javascript
Vue.js常用指令汇总(v-if、v-for等)
2016/11/03 Javascript
基本DOM节点操作
2017/01/17 Javascript
Jil,高效的json序列化和反序列化库
2017/02/15 Javascript
Node.js中看JavaScript的引用
2017/04/22 Javascript
JavaScript实现简单的树形菜单效果
2017/06/23 Javascript
javascript实现遮罩层动态效果实例
2019/05/14 Javascript
JavaScript如何把两个数组对象合并过程解析
2019/10/10 Javascript
微信小程序获取复选框全选反选选中的值(实例代码)
2019/12/17 Javascript
Node.js中文件系统fs模块的使用及常用接口
2020/03/06 Javascript
python实现的二叉树算法和kmp算法实例
2014/04/25 Python
使用python实现rsa算法代码
2016/02/17 Python
django中media媒体路径设置的步骤
2019/11/15 Python
解决IDEA 的 plugins 搜不到任何的插件问题
2020/05/04 Python
Python3批量创建Crowd用户并分配组
2020/05/20 Python
pycharm远程连接服务器并配置python interpreter的方法
2020/12/23 Python
利用HTML5 Canvas API绘制矩形的超级攻略
2016/03/21 HTML / CSS
硅酸盐工业控制专业应届生求职信
2013/11/02 职场文书
杠杆的科学教学反思
2014/01/10 职场文书
试用期自我鉴定范文
2014/03/20 职场文书
导师工作推荐信范文
2014/05/17 职场文书
男性健康日的活动方案
2014/08/18 职场文书
迎七一演讲稿
2014/09/12 职场文书
协议书范文
2015/01/27 职场文书
餐饮服务员岗位职责
2015/02/09 职场文书
一文简单了解MySQL前缀索引
2022/04/03 MySQL