python利用Opencv实现人脸识别功能


Posted in Python onApril 25, 2019

本文实例为大家分享了python利用Opencv实现人脸识别功能的具体代码,供大家参考,具体内容如下

首先:需要在在自己本地安装opencv具体步骤可以问度娘

如果从事于开发中的话建议用第三方的人脸识别(推荐阿里)

1、视频流中进行人脸识别

# -*- coding: utf-8 -*-
 
import cv2
import sys
from PIL import Image
 
 
def CatchUsbVideo(window_name, camera_idx):
  cv2.namedWindow(window_name)
 
  # 视频来源,可以来自一段已存好的视频,也可以直接来自USB摄像头
  cap = cv2.VideoCapture(camera_idx)
 
  # 告诉OpenCV使用人脸识别分类器
  classfier = cv2.CascadeClassifier("/usr/share/opencv/haarcascades/haarcascade_frontalface_alt2.xml")
 
  # 识别出人脸后要画的边框的颜色,RGB格式
  color = (0, 255, 0)
 
  count=0
 
  while cap.isOpened():
    ok, frame = cap.read() # 读取一帧数据
    if not ok:
      break
 
      # 将当前帧转换成灰度图像
    grey = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
 
    # 人脸检测,1.2和2分别为图片缩放比例和需要检测的有效点数
    faceRects = classfier.detectMultiScale(grey, scaleFactor=1.2, minNeighbors=3, minSize=(32, 32))
    if len(faceRects) > 0: # 大于0则检测到人脸
      count=count+1
  return count
 
 
if __name__ == '__main__':
  result=CatchUsbVideo("识别人脸区域", '2222.mp4')
  if result>0:
    print('视频中有人!!')
  else:
    print('视频中无人!!')

2、通过图片识别人脸

#-*-coding:utf8-*-#
 
import os
import cv2
from PIL import Image,ImageDraw
from datetime import datetime
import time
 
#detectFaces()返回图像中所有人脸的矩形坐标(矩形左上、右下顶点)
#使用haar特征的级联分类器haarcascade_frontalface_default.xml,在haarcascades目录下还有其他的训练好的xml文件可供选择。
#注:haarcascades目录下训练好的分类器必须以灰度图作为输入。
def detectFaces(image_name):
  img = cv2.imread(image_name)
  face_cascade = cv2.CascadeClassifier("/usr/share/opencv/haarcascades/haarcascade_frontalface_default.xml")
  if img.ndim == 3:
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
  else:
    gray = img #if语句:如果img维度为3,说明不是灰度图,先转化为灰度图gray,如果不为3,也就是2,原图就是灰度图
 
  faces = face_cascade.detectMultiScale(gray, 1.2, 5)#1.3和5是特征的最小、最大检测窗口,它改变检测结果也会改变
  result = []
  for (x,y,width,height) in faces:
    result.append((x,y,x+width,y+height))
  return result
 
 
#保存人脸图
def saveFaces(image_name):
  faces = detectFaces(image_name)
  if faces:
    #将人脸保存在save_dir目录下。
    #Image模块:Image.open获取图像句柄,crop剪切图像(剪切的区域就是detectFaces返回的坐标),save保存。
    save_dir = image_name.split('.')[0]+"_faces"
    os.mkdir(save_dir)
    count = 0
    for (x1,y1,x2,y2) in faces:
      file_name = os.path.join(save_dir,str(count)+".jpg")
      Image.open(image_name).crop((x1,y1,x2,y2)).save(file_name)
      count+=1
 
#在原图像上画矩形,框出所有人脸。
#调用Image模块的draw方法,Image.open获取图像句柄,ImageDraw.Draw获取该图像的draw实例,然后调用该draw实例的rectangle方法画矩形(矩形的坐标即
#detectFaces返回的坐标),outline是矩形线条颜色(B,G,R)。
#注:原始图像如果是灰度图,则去掉outline,因为灰度图没有RGB可言。drawEyes、detectSmiles也一样。
def drawFaces(image_name):
  faces = detectFaces(image_name)
  if faces:
    img = Image.open(image_name)
    draw_instance = ImageDraw.Draw(img)
    for (x1,y1,x2,y2) in faces:
      draw_instance.rectangle((x1,y1,x2,y2), outline=(255, 0,0))
    img.save('drawfaces_'+image_name)
 
#检测眼睛,返回坐标
#由于眼睛在人脸上,我们往往是先检测出人脸,再细入地检测眼睛。故detectEyes可在detectFaces基础上来进行,代码中需要注意“相对坐标”。
#当然也可以在整张图片上直接使用分类器,这种方法代码跟detectFaces一样,这里不多说。
def detectEyes(image_name):
  eye_cascade = cv2.CascadeClassifier('/usr/share/opencv/haarcascades/haarcascade_eye.xml')
  faces = detectFaces(image_name)
 
  img = cv2.imread(image_name)
  gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
  result = []
  for (x1,y1,x2,y2) in faces:
    roi_gray = gray[y1:y2, x1:x2]
    eyes = eye_cascade.detectMultiScale(roi_gray,1.3,2)
    for (ex,ey,ew,eh) in eyes:
      result.append((x1+ex,y1+ey,x1+ex+ew,y1+ey+eh))
  return result
 
 
#在原图像上框出眼睛.
def drawEyes(image_name):
  eyes = detectEyes(image_name)
  if eyes:
    img = Image.open(image_name)
    draw_instance = ImageDraw.Draw(img)
    for (x1,y1,x2,y2) in eyes:
      draw_instance.rectangle((x1,y1,x2,y2), outline=(0, 0,255))
    img.save('draweyes_'+image_name)
 
 
#检测笑脸
def detectSmiles(image_name):
  img = cv2.imread(image_name)
  smiles_cascade = cv2.CascadeClassifier("/usr/share/opencv/haarcascades/haarcascade_smile.xml")
  if img.ndim == 3:
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
  else:
    gray = img #if语句:如果img维度为3,说明不是灰度图,先转化为灰度图gray,如果不为3,也就是2,原图就是灰度图
 
  smiles = smiles_cascade.detectMultiScale(gray,4,5)
  result = []
  for (x,y,width,height) in smiles:
    result.append((x,y,x+width,y+height))
  return result
 
 
#在原图像上框出笑脸
def drawSmiles(image_name):
  smiles = detectSmiles(image_name)
  if smiles:
    img = Image.open(image_name)
    draw_instance = ImageDraw.Draw(img)
    for (x1,y1,x2,y2) in smiles:
      draw_instance.rectangle((x1,y1,x2,y2), outline=(100, 100,0))
    img.save('drawsmiles_'+image_name)
 
 
if __name__ == '__main__':
  time1=datetime.now()
  result=detectFaces('9.jpg')
  time2=datetime.now()
  print("耗时:"+str(time2-time1))
  if len(result)>0:
    print("有人存在!!---》人数为:"+str(len(result)))
  else:
    print('视频图像中无人!!')
 
  drawFaces('9.jpg')
  # drawEyes('obama.jpg')
  # drawSmiles('obama.jpg')
  # saveFaces('obama.jpg')
 
"""
上面的代码将眼睛、人脸、笑脸在不同的图像上框出,如果需要在同一张图像上框出,改一下代码就可以了。
总之,利用opencv里训练好的haar特征的xml文件,在图片上检测出人脸的坐标,利用这个坐标,我们可以将人脸区域剪切保存,也可以在原图上将人脸框出。剪切保存人脸以及用矩形工具框出人脸,本程序使用的是PIL里的Image、ImageDraw模块。
此外,opencv里面也有画矩形的模块,同样可以用来框出人脸。
"""

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python中time模块与datetime模块在使用中的不同之处
Nov 24 Python
Python匹配中文的正则表达式
May 11 Python
Python程序员面试题 你必须提前准备!(答案及解析)
Jan 23 Python
详解Django rest_framework实现RESTful API
May 24 Python
Python+Pandas 获取数据库并加入DataFrame的实例
Jul 25 Python
python实现多进程代码示例
Oct 31 Python
PyQt 图解Qt Designer工具的使用方法
Aug 06 Python
弄懂这56个Python使用技巧(轻松掌握Python高效开发)
Sep 18 Python
python中如何使用insert函数
Jan 09 Python
Jupyter Notebook输出矢量图实例
Apr 14 Python
pycharm 关闭search everywhere的解决操作
Jan 15 Python
Python中for后接else的语法使用
May 18 Python
Python OpenCV利用笔记本摄像头实现人脸检测
Aug 20 #Python
python使用KNN算法识别手写数字
Apr 25 #Python
Python3.5运算符操作实例详解
Apr 25 #Python
Python对象转换为json的方法步骤
Apr 25 #Python
Python+PyQt5实现美剧爬虫可视工具的方法
Apr 25 #Python
详解用python实现基本的学生管理系统(文件存储版)(python3)
Apr 25 #Python
Python基础教程之if判断,while循环,循环嵌套
Apr 25 #Python
You might like
PHP实时显示输出
2008/10/02 PHP
PHP中trait使用方法详细介绍
2017/05/21 PHP
PHP数组内存利用率低和弱类型详细解读
2017/08/10 PHP
php中file_get_contents()函数用法实例
2019/02/21 PHP
jquery对单选框,多选框,文本框等常见操作小结
2014/01/08 Javascript
JQuery中DOM事件冒泡实例分析
2015/06/13 Javascript
Jquery日历插件制作简单日历
2015/10/28 Javascript
在 Express 中使用模板引擎
2015/12/10 Javascript
javascript中select下拉框的用法总结
2016/01/07 Javascript
JQueryEasyUI之DataGrid数据显示
2016/11/23 Javascript
原生JS实现图片懒加载(lazyload)实例
2017/06/13 Javascript
使用node.js对音视频文件加密的实例代码
2017/08/30 Javascript
node 命令方式启动修改端口的方法
2018/05/12 Javascript
vue-content-loader内容加载器的使用方法
2018/08/05 Javascript
js实现数字从零慢慢增加到指定数字示例
2019/11/07 Javascript
Vue 自适应高度表格的实现方法
2020/05/13 Javascript
JS sort排序详细使用方法示例解析
2020/09/27 Javascript
[00:44]2016完美“圣”典 风云人物:Mikasa宣传片
2016/12/07 DOTA
python实现的一个p2p文件传输实例
2014/06/04 Python
Django在Win7下的安装及创建项目hello word简明教程
2014/07/14 Python
Python中的random()方法的使用介绍
2015/05/15 Python
Python3搜索及替换文件中文本的方法
2015/05/22 Python
详解Python进程间通信之命名管道
2017/08/28 Python
numpy.random模块用法总结
2019/05/27 Python
Python enumerate函数遍历数据对象组合过程解析
2019/12/11 Python
Python Selenium库的基本使用教程
2021/01/04 Python
video结合canvas实现视频在线截图功能
2018/06/25 HTML / CSS
建筑工程管理专业自荐信范文
2013/12/28 职场文书
中学生操行评语大全
2014/04/24 职场文书
环保建议书100字
2014/05/14 职场文书
2014年党员自我评议总结
2014/09/23 职场文书
2016党员党课心得体会
2016/01/07 职场文书
家庭教育培训学习心得体会
2016/01/14 职场文书
Python爬虫之爬取最新更新的小说网站
2021/05/06 Python
Python绘制地图神器folium的新人入门指南
2021/05/23 Python
VMware虚拟机安装 Windows Server 2022的详细图文教程
2022/09/23 Servers