Python实现简单遗传算法(SGA)


Posted in Python onJanuary 29, 2018

本文用Python3完整实现了简单遗传算法(SGA)

Simple Genetic Alogrithm是模拟生物进化过程而提出的一种优化算法。SGA采用随机导向搜索全局最优解或者说近似全局最优解。传统的爬山算法(例如梯度下降,牛顿法)一次只优化一个解,并且对于多峰的目标函数很容易陷入局部最优解,而SGA算法一次优化一个种群(即一次优化多个解),SGA比传统的爬山算法更容易收敛到全局最优解或者近似全局最优解。
SGA基本流程如下:

1、对问题的解进行二进制编码。编码涉及精度的问题,在本例中精度delta=0.0001,根据决策变量的上下界确定对应此决策变量的染色体基因的长度(m)。假设一个决策变量x0上界为upper,下界为lower,则精度delta = (upper-lower)/2^m-1。如果已知决策变量边界和编码精度,那么可以用下面的公式确定编码决策变量x0所对应的染色体长度:

2^(length-1)<(upper-lower)/delta<=2^length-1

2、对染色体解码得到表现形:

解码后得到10进制的值;decoded = lower + binary2demical(chromosome)*delta。其中binary2demical为二进制转10进制的函数,在代码中有实现,chromosome是编码后的染色体。

3、确定初始种群,初始种群随机生成

4、根据解码函数得到初始种群的10进制表现型的值

5、确定适应度函数,对于求最大值最小值问题,一般适应度函数就是目标函数。根据适应度函数确定每个个体的适应度值Fi=FitnessFunction(individual);然后确定每个个体被选择的概率Pi=Fi/sum(Fi),sum(Fi)代表所有个体适应度之和。

6、根据轮盘赌选择算子,选取适应度较大的个体。一次选取一个个体,选取n次,得到新的种群population

7、确定交叉概率Pc,对上一步得到的种群进行单点交叉。每次交叉点的位置随机。

8、确定变异概率Pm,假设种群大小为10,每个个体染色体编码长度为33,则一共有330个基因位,则变异的基因位数是330*Pm。接下来,要确定是那个染色体中哪个位置的基因发生了变异。将330按照10进制序号进行编码即从0,1,2,.......229。随机从330个数中选择330*Pm个数,假设其中一个数时154,chromosomeIndex = 154/33 =4,
geneIndex = 154%33 = 22。由此确定了第154号位置的基因位于第4个染色体的第22个位置上,将此位置的基因值置反完成基本位变异操作。

9、以上步骤完成了一次迭代的所有操作。接下就是评估的过程。对变异后得到的最终的种群进行解码,利用解码值求得每个个体的适应度值,将最大的适应度值保存下来,对应的解码后的决策变量的值也保存下来。

10、根据迭代次数,假设是500次,重复执行1-9的步骤,最终得到是一个500个数值的最优适应度取值的数组以及一个500*n的决策变量取值数组(假设有n个决策变量)。从500个值中找到最优的一个(最大或者最小,根据定义的适应度函数来选择)以及对应的决策变量的取值。
对于以上流程不是很清楚的地方,在代码中有详细的注释。也可以自行查找资料补充理论。本文重点是实现
本代码实现的问题是: maxf(x1,x2) = 21.5+x1*sin(4*pi*x1)+x2*sin(20*pi*x2)
                         s.t. -3.0<=x1<=12.1
4.1<=x2<=5.8

初始种群的编码结果如下图所示:

Python实现简单遗传算法(SGA)

初始种群的解码结果如下图所示:

Python实现简单遗传算法(SGA)

适应度值如图所示:

Python实现简单遗传算法(SGA)

轮盘赌选择后的种群如图所示;

Python实现简单遗传算法(SGA)

单点交叉后的种群如图所示:

Python实现简单遗传算法(SGA)

基本位变异后的种群如图所示;

Python实现简单遗传算法(SGA)

最终结果如下图所示;

Python实现简单遗传算法(SGA)

源代码如下;

# !/usr/bin/env python 
# -*- coding:utf-8 -*- 
# Author: wsw 
# 简单实现SGA算法 
import numpy as np 
from scipy.optimize import fsolve, basinhopping 
import random 
import timeit 
 
 
# 根据解的精度确定染色体(chromosome)的长度 
# 需要根据决策变量的上下边界来确定 
def getEncodedLength(delta=0.0001, boundarylist=[]): 
 # 每个变量的编码长度 
 lengths = [] 
 for i in boundarylist: 
  lower = i[0] 
  upper = i[1] 
  # lamnda 代表匿名函数f(x)=0,50代表搜索的初始解 
  res = fsolve(lambda x: ((upper - lower) * 1 / delta) - 2 ** x - 1, 50) 
  length = int(np.floor(res[0])) 
  lengths.append(length) 
 return lengths 
 pass 
 
 
# 随机生成初始编码种群 
def getIntialPopulation(encodelength, populationSize): 
 # 随机化初始种群为0 
 chromosomes = np.zeros((populationSize, sum(encodelength)), dtype=np.uint8) 
 for i in range(populationSize): 
  chromosomes[i, :] = np.random.randint(0, 2, sum(encodelength)) 
 # print('chromosomes shape:', chromosomes.shape) 
 return chromosomes 
 
 
# 染色体解码得到表现型的解 
def decodedChromosome(encodelength, chromosomes, boundarylist, delta=0.0001): 
 populations = chromosomes.shape[0] 
 variables = len(encodelength) 
 decodedvalues = np.zeros((populations, variables)) 
 for k, chromosome in enumerate(chromosomes): 
  chromosome = chromosome.tolist() 
  start = 0 
  for index, length in enumerate(encodelength): 
   # 将一个染色体进行拆分,得到染色体片段 
   power = length - 1 
   # 解码得到的10进制数字 
   demical = 0 
   for i in range(start, length + start): 
    demical += chromosome[i] * (2 ** power) 
    power -= 1 
   lower = boundarylist[index][0] 
   upper = boundarylist[index][1] 
   decodedvalue = lower + demical * (upper - lower) / (2 ** length - 1) 
   decodedvalues[k, index] = decodedvalue 
   # 开始去下一段染色体的编码 
   start = length 
 return decodedvalues 
 
 
# 得到个体的适应度值及每个个体被选择的累积概率 
def getFitnessValue(func, chromosomesdecoded): 
 # 得到种群规模和决策变量的个数 
 population, nums = chromosomesdecoded.shape 
 # 初始化种群的适应度值为0 
 fitnessvalues = np.zeros((population, 1)) 
 # 计算适应度值 
 for i in range(population): 
  fitnessvalues[i, 0] = func(chromosomesdecoded[i, :]) 
 # 计算每个染色体被选择的概率 
 probability = fitnessvalues / np.sum(fitnessvalues) 
 # 得到每个染色体被选中的累积概率 
 cum_probability = np.cumsum(probability) 
 return fitnessvalues, cum_probability 
 
 
# 新种群选择 
def selectNewPopulation(chromosomes, cum_probability): 
 m, n = chromosomes.shape 
 newpopulation = np.zeros((m, n), dtype=np.uint8) 
 # 随机产生M个概率值 
 randoms = np.random.rand(m) 
 for i, randoma in enumerate(randoms): 
  logical = cum_probability >= randoma 
  index = np.where(logical == 1) 
  # index是tuple,tuple中元素是ndarray 
  newpopulation[i, :] = chromosomes[index[0][0], :] 
 return newpopulation 
 pass 
 
 
# 新种群交叉 
def crossover(population, Pc=0.8): 
 """ 
 :param population: 新种群 
 :param Pc: 交叉概率默认是0.8 
 :return: 交叉后得到的新种群 
 """ 
 # 根据交叉概率计算需要进行交叉的个体个数 
 m, n = population.shape 
 numbers = np.uint8(m * Pc) 
 # 确保进行交叉的染色体个数是偶数个 
 if numbers % 2 != 0: 
  numbers += 1 
 # 交叉后得到的新种群 
 updatepopulation = np.zeros((m, n), dtype=np.uint8) 
 # 产生随机索引 
 index = random.sample(range(m), numbers) 
 # 不进行交叉的染色体进行复制 
 for i in range(m): 
  if not index.__contains__(i): 
   updatepopulation[i, :] = population[i, :] 
 # crossover 
 while len(index) > 0: 
  a = index.pop() 
  b = index.pop() 
  # 随机产生一个交叉点 
  crossoverPoint = random.sample(range(1, n), 1) 
  crossoverPoint = crossoverPoint[0] 
  # one-single-point crossover 
  updatepopulation[a, 0:crossoverPoint] = population[a, 0:crossoverPoint] 
  updatepopulation[a, crossoverPoint:] = population[b, crossoverPoint:] 
  updatepopulation[b, 0:crossoverPoint] = population[b, 0:crossoverPoint] 
  updatepopulation[b, crossoverPoint:] = population[a, crossoverPoint:] 
 return updatepopulation 
 pass 
 
 
# 染色体变异 
def mutation(population, Pm=0.01): 
 """ 
 
 :param population: 经交叉后得到的种群 
 :param Pm: 变异概率默认是0.01 
 :return: 经变异操作后的新种群 
 """ 
 updatepopulation = np.copy(population) 
 m, n = population.shape 
 # 计算需要变异的基因个数 
 gene_num = np.uint8(m * n * Pm) 
 # 将所有的基因按照序号进行10进制编码,则共有m*n个基因 
 # 随机抽取gene_num个基因进行基本位变异 
 mutationGeneIndex = random.sample(range(0, m * n), gene_num) 
 # 确定每个将要变异的基因在整个染色体中的基因座(即基因的具体位置) 
 for gene in mutationGeneIndex: 
  # 确定变异基因位于第几个染色体 
  chromosomeIndex = gene // n 
  # 确定变异基因位于当前染色体的第几个基因位 
  geneIndex = gene % n 
  # mutation 
  if updatepopulation[chromosomeIndex, geneIndex] == 0: 
   updatepopulation[chromosomeIndex, geneIndex] = 1 
  else: 
   updatepopulation[chromosomeIndex, geneIndex] = 0 
 return updatepopulation 
 pass 
 
 
# 定义适应度函数 
def fitnessFunction(): 
 return lambda x: 21.5 + x[0] * np.sin(4 * np.pi * x[0]) + x[1] * np.sin(20 * np.pi * x[1]) 
 pass 
 
 
def main(max_iter=500): 
 # 每次迭代得到的最优解 
 optimalSolutions = [] 
 optimalValues = [] 
 # 决策变量的取值范围 
 decisionVariables = [[-3.0, 12.1], [4.1, 5.8]] 
 # 得到染色体编码长度 
 lengthEncode = getEncodedLength(boundarylist=decisionVariables) 
 for iteration in range(max_iter): 
  # 得到初始种群编码 
  chromosomesEncoded = getIntialPopulation(lengthEncode, 10) 
  # 种群解码 
  decoded = decodedChromosome(lengthEncode, chromosomesEncoded, decisionVariables) 
  # 得到个体适应度值和个体的累积概率 
  evalvalues, cum_proba = getFitnessValue(fitnessFunction(), decoded) 
  # 选择新的种群 
  newpopulations = selectNewPopulation(chromosomesEncoded, cum_proba) 
  # 进行交叉操作 
  crossoverpopulation = crossover(newpopulations) 
  # mutation 
  mutationpopulation = mutation(crossoverpopulation) 
  # 将变异后的种群解码,得到每轮迭代最终的种群 
  final_decoded = decodedChromosome(lengthEncode, mutationpopulation, decisionVariables) 
  # 适应度评价 
  fitnessvalues, cum_individual_proba = getFitnessValue(fitnessFunction(), final_decoded) 
  # 搜索每次迭代的最优解,以及最优解对应的目标函数的取值 
  optimalValues.append(np.max(list(fitnessvalues))) 
  index = np.where(fitnessvalues == max(list(fitnessvalues))) 
  optimalSolutions.append(final_decoded[index[0][0], :]) 
 # 搜索最优解 
 optimalValue = np.max(optimalValues) 
 optimalIndex = np.where(optimalValues == optimalValue) 
 optimalSolution = optimalSolutions[optimalIndex[0][0]] 
 return optimalSolution, optimalValue 
 
 
solution, value = main() 
print('最优解: x1, x2') 
print(solution[0], solution[1]) 
print('最优目标函数值:', value) 
# 测量运行时间 
elapsedtime = timeit.timeit(stmt=main, number=1) 
print('Searching Time Elapsed:(S)', elapsedtime)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python基础教程之面向对象的一些概念
Aug 29 Python
在Django中使用Sitemap的方法讲解
Jul 22 Python
Python实现的下载网页源码功能示例
Jun 13 Python
Python 实现简单的shell sed替换功能(实例讲解)
Sep 29 Python
详解Tensorflow数据读取有三种方式(next_batch)
Feb 01 Python
python中subprocess批量执行linux命令
Apr 27 Python
Python爬虫之网页图片抓取的方法
Jul 16 Python
pyqt5 实现 下拉菜单 + 打开文件的示例代码
Jun 20 Python
tensorflow之获取tensor的shape作为max_pool的ksize实例
Jan 04 Python
Pycharm 设置默认解释器路径和编码格式的操作
Feb 05 Python
Python与C/C++的相互调用案例
Mar 04 Python
用python删除文件夹中的重复图片(图片去重)
May 12 Python
Python之reload流程实例代码解析
Jan 29 #Python
Python中的默认参数实例分析
Jan 29 #Python
Python使用遗传算法解决最大流问题
Jan 29 #Python
Python subprocess模块详细解读
Jan 29 #Python
python微信跳一跳游戏辅助代码解析
Jan 29 #Python
Python面向对象之继承代码详解
Jan 29 #Python
Python多线程threading和multiprocessing模块实例解析
Jan 29 #Python
You might like
PHP6 先修班 JSON实例代码
2008/08/23 PHP
PHP网页游戏学习之Xnova(ogame)源码解读(八)
2014/06/23 PHP
JavaScript 编程引入命名空间的方法与代码
2007/08/13 Javascript
js focus不起作用的解决方法(主要是因为dom元素是否加载完成)
2010/11/05 Javascript
如何使用Javascript获取距今n天前的日期
2013/07/08 Javascript
javascript中的括号()用法小结
2014/04/14 Javascript
nodejs npm包管理的配置方法及常用命令介绍
2014/06/05 NodeJs
浅谈jQuery.easyui的datebox格式化时间
2015/06/25 Javascript
使用Javascript写的2048小游戏
2015/11/25 Javascript
基于Bootstrap的后台管理面板 Bootstrap Metro Dashboard
2016/06/17 Javascript
jQuery在ie6下无法设置select选中的解决方法详解
2016/09/20 Javascript
详解ECharts使用心得总结
2016/12/06 Javascript
尝试自己动手用react来写一个分页组件(小结)
2018/02/09 Javascript
ES6的Fetch异步请求的实现方法
2018/12/07 Javascript
微信小程序吸底区域适配iPhoneX的实现
2020/04/09 Javascript
js操作两个json数组合并、去重,以及删除某一项元素
2020/09/22 Javascript
Vue+axios封装请求实现前后端分离
2020/10/23 Javascript
vuex Module将 store 分割成模块的操作
2020/12/07 Vue.js
el-table表头根据内容自适应完美解决表头错位和固定列错位
2021/01/07 Javascript
Python实现读取TXT文件数据并存进内置数据库SQLite3的方法
2017/08/08 Python
Python设计模式之备忘录模式原理与用法详解
2019/01/15 Python
Python3字符串encode与decode的讲解
2019/04/02 Python
浅谈JupyterNotebook导出pdf解决中文的问题
2020/04/22 Python
python爬取”顶点小说网“《纯阳剑尊》的示例代码
2020/10/16 Python
比利时的在线灯具店:Lampen24.be
2019/07/01 全球购物
美国职棒大联盟的官方手套、球和头盔:Rawlings
2020/02/15 全球购物
27个经典Linux面试题及答案,你知道几个?
2014/03/11 面试题
大学生学习面向未来的赶考思想汇报
2014/09/12 职场文书
环卫工人慰问信
2015/02/15 职场文书
任命书格式模板
2015/09/22 职场文书
中小学教师继续教育心得体会
2016/01/19 职场文书
导游词之日本富士山
2020/01/06 职场文书
Nginx反向代理学习实例教程
2021/10/24 Servers
WebWorker 封装 JavaScript 沙箱详情
2021/11/02 Javascript
怎么禁用Windows 11快照布局? win11不使用快照布局的技巧
2021/11/21 数码科技
Java 中的 Lambda List 转 Map 的多种方法详解
2022/07/07 Java/Android