Python实现Canny及Hough算法代码实例解析


Posted in Python onAugust 06, 2020

任务说明:编写一个钱币定位系统,其不仅能够检测出输入图像中各个钱币的边缘,同时,还能给出各个钱币的圆心坐标与半径。

效果

Python实现Canny及Hough算法代码实例解析

代码实现

Canny边缘检测:

# Author: Ji Qiu (BUPT)
# filename: my_canny.py

import cv2
import numpy as np


class Canny:

  def __init__(self, Guassian_kernal_size, img, HT_high_threshold, HT_low_threshold):
    '''
    :param Guassian_kernal_size: 高斯滤波器尺寸
    :param img: 输入的图片,在算法过程中改变
    :param HT_high_threshold: 滞后阈值法中的高阈值
    :param HT_low_threshold: 滞后阈值法中的低阈值
    '''
    self.Guassian_kernal_size = Guassian_kernal_size
    self.img = img
    self.y, self.x = img.shape[0:2]
    self.angle = np.zeros([self.y, self.x])
    self.img_origin = None
    self.x_kernal = np.array([[-1, 1]])
    self.y_kernal = np.array([[-1], [1]])
    self.HT_high_threshold = HT_high_threshold
    self.HT_low_threshold = HT_low_threshold

  def Get_gradient_img(self):
    '''
    计算梯度图和梯度方向矩阵。
    :return: 生成的梯度图
    '''
    print ('Get_gradient_img')
    
    new_img_x = np.zeros([self.y, self.x], dtype=np.float)
    new_img_y = np.zeros([self.y, self.x], dtype=np.float)
    for i in range(0, self.x):
      for j in range(0, self.y):
        if j == 0:
          new_img_y[j][i] = 1
        else:
          new_img_y[j][i] = np.sum(np.array([[self.img[j - 1][i]], [self.img[j][i]]]) * self.y_kernal)
        if i == 0:
          new_img_x[j][i] = 1
        else:
          new_img_x[j][i] = np.sum(np.array([self.img[j][i - 1], self.img[j][i]]) * self.x_kernal)

    gradient_img, self.angle = cv2.cartToPolar(new_img_x, new_img_y)#返回幅值和相位
    self.angle = np.tan(self.angle)
    self.img = gradient_img.astype(np.uint8)
    return self.img

  def Non_maximum_suppression (self):
    '''
    对生成的梯度图进行非极大化抑制,将tan值的大小与正负结合,确定离散中梯度的方向。
    :return: 生成的非极大化抑制结果图
    '''
    print ('Non_maximum_suppression')
    
    result = np.zeros([self.y, self.x])
    for i in range(1, self.y - 1):
      for j in range(1, self.x - 1):
        if abs(self.img[i][j]) <= 4:
          result[i][j] = 0
          continue
        elif abs(self.angle[i][j]) > 1:
          gradient2 = self.img[i - 1][j]
          gradient4 = self.img[i + 1][j]
          # g1 g2
          #  C
          #  g4 g3
          if self.angle[i][j] > 0:
            gradient1 = self.img[i - 1][j - 1]
            gradient3 = self.img[i + 1][j + 1]
          #  g2 g1
          #  C
          # g3 g4
          else:
            gradient1 = self.img[i - 1][j + 1]
            gradient3 = self.img[i + 1][j - 1]
        else:
          gradient2 = self.img[i][j - 1]
          gradient4 = self.img[i][j + 1]
          # g1
          # g2 C g4
          #   g3
          if self.angle[i][j] > 0:
            gradient1 = self.img[i - 1][j - 1]
            gradient3 = self.img[i + 1][j + 1]
          #   g3
          # g2 C g4
          # g1
          else:
            gradient3 = self.img[i - 1][j + 1]
            gradient1 = self.img[i + 1][j - 1]

        temp1 = abs(self.angle[i][j]) * gradient1 + (1 - abs(self.angle[i][j])) * gradient2
        temp2 = abs(self.angle[i][j]) * gradient3 + (1 - abs(self.angle[i][j])) * gradient4
        if self.img[i][j] >= temp1 and self.img[i][j] >= temp2:
          result[i][j] = self.img[i][j]
        else:
          result[i][j] = 0
    self.img = result
    return self.img

  def Hysteresis_thresholding(self):
    '''
    对生成的非极大化抑制结果图进行滞后阈值法,用强边延伸弱边,这里的延伸方向为梯度的垂直方向,
    将比低阈值大比高阈值小的点置为高阈值大小,方向在离散点上的确定与非极大化抑制相似。
    :return: 滞后阈值法结果图
    '''
    print ('Hysteresis_thresholding')
    
    for i in range(1, self.y - 1):
      for j in range(1, self.x - 1):
        if self.img[i][j] >= self.HT_high_threshold:
          if abs(self.angle[i][j]) < 1:
            if self.img_origin[i - 1][j] > self.HT_low_threshold:
              self.img[i - 1][j] = self.HT_high_threshold
            if self.img_origin[i + 1][j] > self.HT_low_threshold:
              self.img[i + 1][j] = self.HT_high_threshold
            # g1 g2
            #  C
            #  g4 g3
            if self.angle[i][j] < 0:
              if self.img_origin[i - 1][j - 1] > self.HT_low_threshold:
                self.img[i - 1][j - 1] = self.HT_high_threshold
              if self.img_origin[i + 1][j + 1] > self.HT_low_threshold:
                self.img[i + 1][j + 1] = self.HT_high_threshold
            #  g2 g1
            #  C
            # g3 g4
            else:
              if self.img_origin[i - 1][j + 1] > self.HT_low_threshold:
                self.img[i - 1][j + 1] = self.HT_high_threshold
              if self.img_origin[i + 1][j - 1] > self.HT_low_threshold:
                self.img[i + 1][j - 1] = self.HT_high_threshold
          else:
            if self.img_origin[i][j - 1] > self.HT_low_threshold:
              self.img[i][j - 1] = self.HT_high_threshold
            if self.img_origin[i][j + 1] > self.HT_low_threshold:
              self.img[i][j + 1] = self.HT_high_threshold
            # g1
            # g2 C g4
            #   g3
            if self.angle[i][j] < 0:
              if self.img_origin[i - 1][j - 1] > self.HT_low_threshold:
                self.img[i - 1][j - 1] = self.HT_high_threshold
              if self.img_origin[i + 1][j + 1] > self.HT_low_threshold:
                self.img[i + 1][j + 1] = self.HT_high_threshold
            #   g3
            # g2 C g4
            # g1
            else:
              if self.img_origin[i - 1][j + 1] > self.HT_low_threshold:
                self.img[i + 1][j - 1] = self.HT_high_threshold
              if self.img_origin[i + 1][j - 1] > self.HT_low_threshold:
                self.img[i + 1][j - 1] = self.HT_high_threshold
    return self.img

  def canny_algorithm(self):
    '''
    按照顺序和步骤调用以上所有成员函数。
    :return: Canny 算法的结果
    '''
    self.img = cv2.GaussianBlur(self.img, (self.Guassian_kernal_size, self.Guassian_kernal_size), 0)
    self.Get_gradient_img()
    self.img_origin = self.img.copy()
    self.Non_maximum_suppression()
    self.Hysteresis_thresholding()
    return self.img

Hough变换

# Author: Ji Qiu (BUPT)
# filename: my_hough.py


import numpy as np
import math

class Hough_transform:
  def __init__(self, img, angle, step=5, threshold=135):
    '''

    :param img: 输入的图像
    :param angle: 输入的梯度方向矩阵
    :param step: Hough 变换步长大小
    :param threshold: 筛选单元的阈值
    '''
    self.img = img
    self.angle = angle
    self.y, self.x = img.shape[0:2]
    self.radius = math.ceil(math.sqrt(self.y**2 + self.x**2))
    self.step = step
    self.vote_matrix = np.zeros([math.ceil(self.y / self.step), math.ceil(self.x / self.step), math.ceil(self.radius / self.step)])
    self.threshold = threshold
    self.circles = []

  def Hough_transform_algorithm(self):
    '''
    按照 x,y,radius 建立三维空间,根据图片中边上的点沿梯度方向对空间中的所有单
    元进行投票。每个点投出来结果为一折线。
    :return: 投票矩阵
    '''
    print ('Hough_transform_algorithm')
    
    for i in range(1, self.y - 1):
      for j in range(1, self.x - 1):
        if self.img[i][j] > 0:
          y = i
          x = j
          r = 0
          while y < self.y and x < self.x and y >= 0 and x >= 0:
            self.vote_matrix[math.floor(y / self.step)][math.floor(x / self.step)][math.floor(r / self.step)] += 1
            y = y + self.step * self.angle[i][j]
            x = x + self.step
            r = r + math.sqrt((self.step * self.angle[i][j])**2 + self.step**2)
          y = i - self.step * self.angle[i][j]
          x = j - self.step
          r = math.sqrt((self.step * self.angle[i][j])**2 + self.step**2)
          while y < self.y and x < self.x and y >= 0 and x >= 0:
            self.vote_matrix[math.floor(y / self.step)][math.floor(x / self.step)][math.floor(r / self.step)] += 1
            y = y - self.step * self.angle[i][j]
            x = x - self.step
            r = r + math.sqrt((self.step * self.angle[i][j])**2 + self.step**2)

    return self.vote_matrix


  def Select_Circle(self):
    '''
    按照阈值从投票矩阵中筛选出合适的圆,并作极大化抑制,这里的非极大化抑制我采
    用的是邻近点结果取平均值的方法,而非单纯的取极大值。
    :return: None
    '''
    print ('Select_Circle')
    
    houxuanyuan = []
    for i in range(0, math.ceil(self.y / self.step)):
      for j in range(0, math.ceil(self.x / self.step)):
        for r in range(0, math.ceil(self.radius / self.step)):
          if self.vote_matrix[i][j][r] >= self.threshold:
            y = i * self.step + self.step / 2
            x = j * self.step + self.step / 2
            r = r * self.step + self.step / 2
            houxuanyuan.append((math.ceil(x), math.ceil(y), math.ceil(r)))
    if len(houxuanyuan) == 0:
      print("No Circle in this threshold.")
      return
    x, y, r = houxuanyuan[0]
    possible = []
    middle = []
    for circle in houxuanyuan:
      if abs(x - circle[0]) <= 20 and abs(y - circle[1]) <= 20:
        possible.append([circle[0], circle[1], circle[2]])
      else:
        result = np.array(possible).mean(axis=0)
        middle.append((result[0], result[1], result[2]))
        possible.clear()
        x, y, r = circle
        possible.append([x, y, r])
    result = np.array(possible).mean(axis=0)
    middle.append((result[0], result[1], result[2]))

    def takeFirst(elem):
      return elem[0]

    middle.sort(key=takeFirst)
    x, y, r = middle[0]
    possible = []
    for circle in middle:
      if abs(x - circle[0]) <= 20 and abs(y - circle[1]) <= 20:
        possible.append([circle[0], circle[1], circle[2]])
      else:
        result = np.array(possible).mean(axis=0)
        print("Circle core: (%f, %f) Radius: %f" % (result[0], result[1], result[2]))
        self.circles.append((result[0], result[1], result[2]))
        possible.clear()
        x, y, r = circle
        possible.append([x, y, r])
    result = np.array(possible).mean(axis=0)
    print("Circle core: (%f, %f) Radius: %f" % (result[0], result[1], result[2]))
    self.circles.append((result[0], result[1], result[2]))
 

  def Calculate(self):
    '''
    按照算法顺序调用以上成员函数
    :return: 圆形拟合结果图,圆的坐标及半径集合
    '''
    self.Hough_transform_algorithm()
    self.Select_Circle()
    return self.circles

调用

# Author: Ji Qiu (BUPT)
# filename: main.py

import cv2
import math
from my_hough import Hough_transform
from my_canny import Canny

# np.set_printoptions(threshold=np.inf)
Path = "picture_source/picture.jpg"
Save_Path = "picture_result/"
Reduced_ratio = 2
Guassian_kernal_size = 3
HT_high_threshold = 25
HT_low_threshold = 6
Hough_transform_step = 6
Hough_transform_threshold = 110

if __name__ == '__main__':
  img_gray = cv2.imread(Path, cv2.IMREAD_GRAYSCALE)
  img_RGB = cv2.imread(Path)
  y, x = img_gray.shape[0:2]
  img_gray = cv2.resize(img_gray, (int(x / Reduced_ratio), int(y / Reduced_ratio)))
  img_RGB = cv2.resize(img_RGB, (int(x / Reduced_ratio), int(y / Reduced_ratio)))
  # canny takes about 40 seconds
  print ('Canny ...')
  canny = Canny(Guassian_kernal_size, img_gray, HT_high_threshold, HT_low_threshold)
  canny.canny_algorithm()
  cv2.imwrite(Save_Path + "canny_result.jpg", canny.img)
  
  # hough takes about 30 seconds
  print ('Hough ...')
  Hough = Hough_transform(canny.img, canny.angle, Hough_transform_step, Hough_transform_threshold)
  circles = Hough.Calculate()
  for circle in circles:
    cv2.circle(img_RGB, (math.ceil(circle[0]), math.ceil(circle[1])), math.ceil(circle[2]), (28, 36, 237), 2)
  cv2.imwrite(Save_Path + "hough_result.jpg", img_RGB)
  print ('Finished!')

运行效果

Python实现Canny及Hough算法代码实例解析

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python入门篇之正则表达式
Oct 20 Python
Python中os.path用法分析
Jan 15 Python
Python使用BeautifulSoup库解析HTML基本使用教程
Mar 31 Python
python实现图片识别汽车功能
Nov 30 Python
CentOS6.9 Python环境配置(python2.7、pip、virtualenv)
May 06 Python
Python Web框架之Django框架Model基础详解
Aug 16 Python
Python爬虫实现使用beautifulSoup4爬取名言网功能案例
Sep 15 Python
python爬虫添加请求头代码实例
Dec 28 Python
Python爬虫程序架构和运行流程原理解析
Mar 09 Python
Python实现删除某列中含有空值的行的示例代码
Jul 20 Python
Python趣味挑战之给幼儿园弟弟生成1000道算术题
May 28 Python
Python趣味实战之手把手教你实现举牌小人生成器
Jun 07 Python
vscode调试django项目的方法
Aug 06 #Python
Python如何使用input函数获取输入
Aug 06 #Python
Python map及filter函数使用方法解析
Aug 06 #Python
python学习笔记之多进程
Aug 06 #Python
Selenium alert 弹窗处理的示例代码
Aug 06 #Python
Python如何进行时间处理
Aug 06 #Python
Python学习笔记之装饰器
Aug 06 #Python
You might like
再次研究下cache_lite
2007/02/14 PHP
php时区转换转换函数
2014/01/07 PHP
PHP扩展程序实现守护进程
2015/04/16 PHP
php实现微信发红包
2015/12/05 PHP
Zend Framework教程之Application和Bootstrap用法详解
2016/03/10 PHP
redirect_uri参数错误的解决方法(必看)
2017/02/16 PHP
使用PHP访问RabbitMQ消息队列的方法示例
2018/06/06 PHP
说说掌握JavaScript语言的思想前提想学习js的朋友可以看看
2009/04/01 Javascript
在IE浏览器中resize事件执行多次的解决方法
2011/07/12 Javascript
ECMAScript 6即将带给我们新的数组操作方法前瞻
2015/01/06 Javascript
微信小程序 es6-promise.js封装请求与处理异步进程
2017/06/12 Javascript
Angular项目中$scope.$apply()方法的使用详解
2017/07/26 Javascript
JavaScript实现的斑马线表格效果【隔行变色】
2017/09/18 Javascript
jQuery中each遍历的三种方法实例分析
2018/09/07 jQuery
Vue.js的复用组件开发流程完整记录
2018/11/29 Javascript
VuePress 静态网站生成方法步骤
2019/02/14 Javascript
简单谈谈javascript高级特性
2019/09/04 Javascript
JS PHP字符串截取函数实现原理解析
2020/08/29 Javascript
JavaScript setTimeout()基本用法有哪些
2020/11/04 Javascript
vue实现防抖的实例代码
2021/01/11 Vue.js
vue+element table表格实现动态列筛选的示例代码
2021/01/14 Vue.js
vue-cli中实现响应式布局的方法
2021/03/02 Vue.js
Python isinstance判断对象类型
2008/09/06 Python
利用Python开发实现简单的记事本
2016/11/15 Python
Python 窗体(tkinter)按钮 位置实例
2019/06/13 Python
Python基于百度AI实现OCR文字识别
2020/04/02 Python
如何在keras中添加自己的优化器(如adam等)
2020/06/19 Python
利用Python将图片中扭曲矩形的复原
2020/09/07 Python
网页切图的CSS和布局经验与要点
2015/04/09 HTML / CSS
浅谈Html5页面打开app的一些思考
2020/03/30 HTML / CSS
夜班门卫岗位职责
2013/12/09 职场文书
协议书与合同的区别
2014/04/18 职场文书
物资采购方案
2014/06/12 职场文书
酒店爱岗敬业演讲稿
2014/09/02 职场文书
基层工作经验证明样本
2014/11/16 职场文书
Redis安装使用RedisJSON模块的方法
2022/03/23 Redis