Python实现Canny及Hough算法代码实例解析


Posted in Python onAugust 06, 2020

任务说明:编写一个钱币定位系统,其不仅能够检测出输入图像中各个钱币的边缘,同时,还能给出各个钱币的圆心坐标与半径。

效果

Python实现Canny及Hough算法代码实例解析

代码实现

Canny边缘检测:

# Author: Ji Qiu (BUPT)
# filename: my_canny.py

import cv2
import numpy as np


class Canny:

  def __init__(self, Guassian_kernal_size, img, HT_high_threshold, HT_low_threshold):
    '''
    :param Guassian_kernal_size: 高斯滤波器尺寸
    :param img: 输入的图片,在算法过程中改变
    :param HT_high_threshold: 滞后阈值法中的高阈值
    :param HT_low_threshold: 滞后阈值法中的低阈值
    '''
    self.Guassian_kernal_size = Guassian_kernal_size
    self.img = img
    self.y, self.x = img.shape[0:2]
    self.angle = np.zeros([self.y, self.x])
    self.img_origin = None
    self.x_kernal = np.array([[-1, 1]])
    self.y_kernal = np.array([[-1], [1]])
    self.HT_high_threshold = HT_high_threshold
    self.HT_low_threshold = HT_low_threshold

  def Get_gradient_img(self):
    '''
    计算梯度图和梯度方向矩阵。
    :return: 生成的梯度图
    '''
    print ('Get_gradient_img')
    
    new_img_x = np.zeros([self.y, self.x], dtype=np.float)
    new_img_y = np.zeros([self.y, self.x], dtype=np.float)
    for i in range(0, self.x):
      for j in range(0, self.y):
        if j == 0:
          new_img_y[j][i] = 1
        else:
          new_img_y[j][i] = np.sum(np.array([[self.img[j - 1][i]], [self.img[j][i]]]) * self.y_kernal)
        if i == 0:
          new_img_x[j][i] = 1
        else:
          new_img_x[j][i] = np.sum(np.array([self.img[j][i - 1], self.img[j][i]]) * self.x_kernal)

    gradient_img, self.angle = cv2.cartToPolar(new_img_x, new_img_y)#返回幅值和相位
    self.angle = np.tan(self.angle)
    self.img = gradient_img.astype(np.uint8)
    return self.img

  def Non_maximum_suppression (self):
    '''
    对生成的梯度图进行非极大化抑制,将tan值的大小与正负结合,确定离散中梯度的方向。
    :return: 生成的非极大化抑制结果图
    '''
    print ('Non_maximum_suppression')
    
    result = np.zeros([self.y, self.x])
    for i in range(1, self.y - 1):
      for j in range(1, self.x - 1):
        if abs(self.img[i][j]) <= 4:
          result[i][j] = 0
          continue
        elif abs(self.angle[i][j]) > 1:
          gradient2 = self.img[i - 1][j]
          gradient4 = self.img[i + 1][j]
          # g1 g2
          #  C
          #  g4 g3
          if self.angle[i][j] > 0:
            gradient1 = self.img[i - 1][j - 1]
            gradient3 = self.img[i + 1][j + 1]
          #  g2 g1
          #  C
          # g3 g4
          else:
            gradient1 = self.img[i - 1][j + 1]
            gradient3 = self.img[i + 1][j - 1]
        else:
          gradient2 = self.img[i][j - 1]
          gradient4 = self.img[i][j + 1]
          # g1
          # g2 C g4
          #   g3
          if self.angle[i][j] > 0:
            gradient1 = self.img[i - 1][j - 1]
            gradient3 = self.img[i + 1][j + 1]
          #   g3
          # g2 C g4
          # g1
          else:
            gradient3 = self.img[i - 1][j + 1]
            gradient1 = self.img[i + 1][j - 1]

        temp1 = abs(self.angle[i][j]) * gradient1 + (1 - abs(self.angle[i][j])) * gradient2
        temp2 = abs(self.angle[i][j]) * gradient3 + (1 - abs(self.angle[i][j])) * gradient4
        if self.img[i][j] >= temp1 and self.img[i][j] >= temp2:
          result[i][j] = self.img[i][j]
        else:
          result[i][j] = 0
    self.img = result
    return self.img

  def Hysteresis_thresholding(self):
    '''
    对生成的非极大化抑制结果图进行滞后阈值法,用强边延伸弱边,这里的延伸方向为梯度的垂直方向,
    将比低阈值大比高阈值小的点置为高阈值大小,方向在离散点上的确定与非极大化抑制相似。
    :return: 滞后阈值法结果图
    '''
    print ('Hysteresis_thresholding')
    
    for i in range(1, self.y - 1):
      for j in range(1, self.x - 1):
        if self.img[i][j] >= self.HT_high_threshold:
          if abs(self.angle[i][j]) < 1:
            if self.img_origin[i - 1][j] > self.HT_low_threshold:
              self.img[i - 1][j] = self.HT_high_threshold
            if self.img_origin[i + 1][j] > self.HT_low_threshold:
              self.img[i + 1][j] = self.HT_high_threshold
            # g1 g2
            #  C
            #  g4 g3
            if self.angle[i][j] < 0:
              if self.img_origin[i - 1][j - 1] > self.HT_low_threshold:
                self.img[i - 1][j - 1] = self.HT_high_threshold
              if self.img_origin[i + 1][j + 1] > self.HT_low_threshold:
                self.img[i + 1][j + 1] = self.HT_high_threshold
            #  g2 g1
            #  C
            # g3 g4
            else:
              if self.img_origin[i - 1][j + 1] > self.HT_low_threshold:
                self.img[i - 1][j + 1] = self.HT_high_threshold
              if self.img_origin[i + 1][j - 1] > self.HT_low_threshold:
                self.img[i + 1][j - 1] = self.HT_high_threshold
          else:
            if self.img_origin[i][j - 1] > self.HT_low_threshold:
              self.img[i][j - 1] = self.HT_high_threshold
            if self.img_origin[i][j + 1] > self.HT_low_threshold:
              self.img[i][j + 1] = self.HT_high_threshold
            # g1
            # g2 C g4
            #   g3
            if self.angle[i][j] < 0:
              if self.img_origin[i - 1][j - 1] > self.HT_low_threshold:
                self.img[i - 1][j - 1] = self.HT_high_threshold
              if self.img_origin[i + 1][j + 1] > self.HT_low_threshold:
                self.img[i + 1][j + 1] = self.HT_high_threshold
            #   g3
            # g2 C g4
            # g1
            else:
              if self.img_origin[i - 1][j + 1] > self.HT_low_threshold:
                self.img[i + 1][j - 1] = self.HT_high_threshold
              if self.img_origin[i + 1][j - 1] > self.HT_low_threshold:
                self.img[i + 1][j - 1] = self.HT_high_threshold
    return self.img

  def canny_algorithm(self):
    '''
    按照顺序和步骤调用以上所有成员函数。
    :return: Canny 算法的结果
    '''
    self.img = cv2.GaussianBlur(self.img, (self.Guassian_kernal_size, self.Guassian_kernal_size), 0)
    self.Get_gradient_img()
    self.img_origin = self.img.copy()
    self.Non_maximum_suppression()
    self.Hysteresis_thresholding()
    return self.img

Hough变换

# Author: Ji Qiu (BUPT)
# filename: my_hough.py


import numpy as np
import math

class Hough_transform:
  def __init__(self, img, angle, step=5, threshold=135):
    '''

    :param img: 输入的图像
    :param angle: 输入的梯度方向矩阵
    :param step: Hough 变换步长大小
    :param threshold: 筛选单元的阈值
    '''
    self.img = img
    self.angle = angle
    self.y, self.x = img.shape[0:2]
    self.radius = math.ceil(math.sqrt(self.y**2 + self.x**2))
    self.step = step
    self.vote_matrix = np.zeros([math.ceil(self.y / self.step), math.ceil(self.x / self.step), math.ceil(self.radius / self.step)])
    self.threshold = threshold
    self.circles = []

  def Hough_transform_algorithm(self):
    '''
    按照 x,y,radius 建立三维空间,根据图片中边上的点沿梯度方向对空间中的所有单
    元进行投票。每个点投出来结果为一折线。
    :return: 投票矩阵
    '''
    print ('Hough_transform_algorithm')
    
    for i in range(1, self.y - 1):
      for j in range(1, self.x - 1):
        if self.img[i][j] > 0:
          y = i
          x = j
          r = 0
          while y < self.y and x < self.x and y >= 0 and x >= 0:
            self.vote_matrix[math.floor(y / self.step)][math.floor(x / self.step)][math.floor(r / self.step)] += 1
            y = y + self.step * self.angle[i][j]
            x = x + self.step
            r = r + math.sqrt((self.step * self.angle[i][j])**2 + self.step**2)
          y = i - self.step * self.angle[i][j]
          x = j - self.step
          r = math.sqrt((self.step * self.angle[i][j])**2 + self.step**2)
          while y < self.y and x < self.x and y >= 0 and x >= 0:
            self.vote_matrix[math.floor(y / self.step)][math.floor(x / self.step)][math.floor(r / self.step)] += 1
            y = y - self.step * self.angle[i][j]
            x = x - self.step
            r = r + math.sqrt((self.step * self.angle[i][j])**2 + self.step**2)

    return self.vote_matrix


  def Select_Circle(self):
    '''
    按照阈值从投票矩阵中筛选出合适的圆,并作极大化抑制,这里的非极大化抑制我采
    用的是邻近点结果取平均值的方法,而非单纯的取极大值。
    :return: None
    '''
    print ('Select_Circle')
    
    houxuanyuan = []
    for i in range(0, math.ceil(self.y / self.step)):
      for j in range(0, math.ceil(self.x / self.step)):
        for r in range(0, math.ceil(self.radius / self.step)):
          if self.vote_matrix[i][j][r] >= self.threshold:
            y = i * self.step + self.step / 2
            x = j * self.step + self.step / 2
            r = r * self.step + self.step / 2
            houxuanyuan.append((math.ceil(x), math.ceil(y), math.ceil(r)))
    if len(houxuanyuan) == 0:
      print("No Circle in this threshold.")
      return
    x, y, r = houxuanyuan[0]
    possible = []
    middle = []
    for circle in houxuanyuan:
      if abs(x - circle[0]) <= 20 and abs(y - circle[1]) <= 20:
        possible.append([circle[0], circle[1], circle[2]])
      else:
        result = np.array(possible).mean(axis=0)
        middle.append((result[0], result[1], result[2]))
        possible.clear()
        x, y, r = circle
        possible.append([x, y, r])
    result = np.array(possible).mean(axis=0)
    middle.append((result[0], result[1], result[2]))

    def takeFirst(elem):
      return elem[0]

    middle.sort(key=takeFirst)
    x, y, r = middle[0]
    possible = []
    for circle in middle:
      if abs(x - circle[0]) <= 20 and abs(y - circle[1]) <= 20:
        possible.append([circle[0], circle[1], circle[2]])
      else:
        result = np.array(possible).mean(axis=0)
        print("Circle core: (%f, %f) Radius: %f" % (result[0], result[1], result[2]))
        self.circles.append((result[0], result[1], result[2]))
        possible.clear()
        x, y, r = circle
        possible.append([x, y, r])
    result = np.array(possible).mean(axis=0)
    print("Circle core: (%f, %f) Radius: %f" % (result[0], result[1], result[2]))
    self.circles.append((result[0], result[1], result[2]))
 

  def Calculate(self):
    '''
    按照算法顺序调用以上成员函数
    :return: 圆形拟合结果图,圆的坐标及半径集合
    '''
    self.Hough_transform_algorithm()
    self.Select_Circle()
    return self.circles

调用

# Author: Ji Qiu (BUPT)
# filename: main.py

import cv2
import math
from my_hough import Hough_transform
from my_canny import Canny

# np.set_printoptions(threshold=np.inf)
Path = "picture_source/picture.jpg"
Save_Path = "picture_result/"
Reduced_ratio = 2
Guassian_kernal_size = 3
HT_high_threshold = 25
HT_low_threshold = 6
Hough_transform_step = 6
Hough_transform_threshold = 110

if __name__ == '__main__':
  img_gray = cv2.imread(Path, cv2.IMREAD_GRAYSCALE)
  img_RGB = cv2.imread(Path)
  y, x = img_gray.shape[0:2]
  img_gray = cv2.resize(img_gray, (int(x / Reduced_ratio), int(y / Reduced_ratio)))
  img_RGB = cv2.resize(img_RGB, (int(x / Reduced_ratio), int(y / Reduced_ratio)))
  # canny takes about 40 seconds
  print ('Canny ...')
  canny = Canny(Guassian_kernal_size, img_gray, HT_high_threshold, HT_low_threshold)
  canny.canny_algorithm()
  cv2.imwrite(Save_Path + "canny_result.jpg", canny.img)
  
  # hough takes about 30 seconds
  print ('Hough ...')
  Hough = Hough_transform(canny.img, canny.angle, Hough_transform_step, Hough_transform_threshold)
  circles = Hough.Calculate()
  for circle in circles:
    cv2.circle(img_RGB, (math.ceil(circle[0]), math.ceil(circle[1])), math.ceil(circle[2]), (28, 36, 237), 2)
  cv2.imwrite(Save_Path + "hough_result.jpg", img_RGB)
  print ('Finished!')

运行效果

Python实现Canny及Hough算法代码实例解析

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python生成指定尺寸缩略图的示例
May 07 Python
Python实现Kmeans聚类算法
Jun 10 Python
Python内置模块logging用法实例分析
Feb 12 Python
Python3.5 创建文件的简单实例
Apr 26 Python
解决python3运行selenium下HTMLTestRunner报错的问题
Dec 27 Python
python实现H2O中的随机森林算法介绍及其项目实战
Aug 29 Python
如何基于Python实现电子邮件的发送
Dec 16 Python
Python scrapy增量爬取实例及实现过程解析
Dec 24 Python
基于python修改srt字幕的时间轴
Feb 03 Python
使用Django xadmin 实现修改时间选择器为不可输入状态
Mar 30 Python
TensorFlow使用Graph的基本操作的实现
Apr 22 Python
selenium自动化测试入门实战
Dec 21 Python
vscode调试django项目的方法
Aug 06 #Python
Python如何使用input函数获取输入
Aug 06 #Python
Python map及filter函数使用方法解析
Aug 06 #Python
python学习笔记之多进程
Aug 06 #Python
Selenium alert 弹窗处理的示例代码
Aug 06 #Python
Python如何进行时间处理
Aug 06 #Python
Python学习笔记之装饰器
Aug 06 #Python
You might like
php 友好URL的实现(吐血推荐)
2008/10/04 PHP
PHP中isset()和unset()函数的用法小结
2014/03/11 PHP
linux下实现定时执行php脚本
2015/02/13 PHP
jQuery查询数据返回object和字符串影响原因是什么
2013/08/09 Javascript
解决JS中乘法的浮点错误的方法
2014/01/03 Javascript
js中settimeout方法加参数的使用实例
2014/02/27 Javascript
基于jQuery实现的图片切换焦点图整理
2014/12/07 Javascript
JavaScript实现将UPC转换成ISBN的方法
2015/05/26 Javascript
详解AngularJS的通信机制
2015/06/18 Javascript
工作中比较实用的JavaScript验证和数据处理的干货(经典)
2016/08/03 Javascript
Json对象和字符串互相转换json数据拼接和JSON使用方式详细介绍(小结)
2016/10/25 Javascript
JS传参及动态修改页面布局
2017/04/13 Javascript
使用JS实现气泡跟随鼠标移动的动画效果
2017/09/16 Javascript
小程序实现发表评论功能
2018/07/06 Javascript
element-ui upload组件多文件上传的示例代码
2018/10/17 Javascript
[52:31]VP vs Serenity 2018国际邀请赛小组赛BO2 第二场 8.16
2018/08/17 DOTA
python实现2014火车票查询代码分享
2014/01/10 Python
用python + hadoop streaming 分布式编程(一) -- 原理介绍,样例程序与本地调试
2014/07/14 Python
用Python实现QQ游戏大家来找茬辅助工具
2014/09/14 Python
Python程序中的观察者模式结构编写示例
2016/05/27 Python
pandas.DataFrame.to_json按行转json的方法
2018/06/05 Python
python读取csv和txt数据转换成向量的实例
2019/02/12 Python
基于Python实现拆分和合并GIF动态图
2019/10/22 Python
python的json中方法及jsonpath模块用法分析
2019/12/06 Python
Keras SGD 随机梯度下降优化器参数设置方式
2020/06/19 Python
Python中qutip用法示例详解
2020/10/02 Python
CSS3与动画有关的属性transition、animation、transform对比(史上最全版)
2017/08/18 HTML / CSS
html5 Canvas画图教程(5)—canvas里画曲线之arc方法
2013/01/09 HTML / CSS
中软国际Java程序员机试题
2012/08/19 面试题
客户经理岗位职责
2013/12/08 职场文书
竞选班长演讲稿
2013/12/30 职场文书
2015年元旦活动总结
2014/05/09 职场文书
先进个人自荐书
2015/03/06 职场文书
七一慰问简报
2015/07/20 职场文书
深入浅出的讲解:信号调制到底是如何实现的
2022/02/18 无线电
浅谈Redis变慢的原因及排查方法
2022/06/21 Redis