Python学习笔记之装饰器


Posted in Python onAugust 06, 2020

一. 什么是装饰器

知乎某大佬如是说:内裤可以用来遮羞,但是到了冬天它没法为我们防风御寒,聪明的人们发明了长裤,有了长裤后宝宝再也不冷了,装饰器就像我们这里说的长裤,在不影响内裤作用的前提下,给我们的身子提供了保暖的功效。
装饰器本质上是Python函数,可以为已存在的对象添加额外的功能,同时装饰器还可以抽离出与函数无关的重用代码。具体应用场景如:插入日志、性能测试、事务处理、缓存、权限校验等。

换言之

装饰器不能影响原函数的功能,装饰器是独立出来的函数。谁调用它,谁就可以使用它的功能。

二.举个栗子

add的功能是计算x和y的值,我们称作功能函数。
logger的作业是在执行add函数的同时再打印了其他的信息,这部分的作为add的功能增强,我们称为装饰。
在logger里我们可以加入其他类似的功能函数,也能包装它,可以进行复用。

1.引子

#功能函数
def add(x,y):
 return x+y

#装饰函数
def logger(fn):
 print('frist')
 x = fn(4,5)
 print('second')
 return x 

print(logger(add))

#把函数add传给logger ,return x+y
#print('frist')
#print('secend')
# x = fn(4,5) ==> x = 4 y= 5 x= 4+5 = 9 
#return 9

frist
second
9

2.提取参数

x,y的参数都放在logger函数内部了,影响函数的灵活性,此处我们可以提取出来。

def add(x,y):
 return x + y

def logger(fn,*args,**kwargs):
 print('frist')
 x = fn(*args,**kwargs)
 print('second')
 return x

print(logger(add,1,y=11))

frist
second
12

3.柯里化

def add(x,y):
 return x + y
def logger(fn):
 def wrapper(*args,**kwargs):
  print('begin')
  x = fn(*args,**kwargs)
  print('end')
  return x
 return wrapper


print(logger(add)(5,y=11))

begin
end
16

懵逼ing

以下为个人理解,左边为非柯里化函数,右边是柯里化函数。

Python学习笔记之装饰器

柯里化函数

前面说过柯里化的定义,本来可以一次传入两个参数,柯里化之后。只需要传入一个函数了。。
左边传入add 和 两个参数。
右边的logger(add)是一个函数,只需要传入两个参数。logger(add)是个整体,结合成一个函数。当然这样写,我们看函数主题的部分也是不一样的。
函数的基础中说过,函数的传参必须和函数参数的定义一致。重点分析右边函数(柯里化)。
参数部分:参数传入的方式,logger函数需要传入个fn,fu的返回值是wrapper函数,wrapper函数的参数是(*args,**kwargs)所以此次就需要分两次传入参数。
第一次传入fn,再次传入wrapper函数需要的参数。所以就出现了最下边的调用方式。
print(logger(add)(5,y=50))。

返回值部分:右侧的logger函数是个嵌套函数,logger的返回值是wrapper,内层的wrapper函数返回值是x,x = fn(*args,**kwargs)。fn函数是最后调用时候传入的add函数。

懵逼 X 2。。。。

def add(x,y):
 return x + y

def logger(fn,*args,**kwargs):  def logger(fn): #参数剥离
           def newfunction(*args,**kwargs): #新定义一个函数,logger函数返回也是这个函数名字
 print('frist')       print('frist')
 x = fn(*args,**kwargs) == >    x = fn(*args,**kwargs)
 print('second')       print('second')
 return x        return x
          return newfunction

print(logger(add,1,y=11))   print(logger(add)(5,y=11)) #两次传入参数

效果如下:

def add(x,y):
 return x + y

def logger(fn): #参数剥离
 def newfunction(*args,**kwargs): #新定义一个函数,logger函数返回也是这个函数名字

  print('frist')
  x = fn(*args,**kwargs)
  print('second')
  return x

 return newfunction

print(logger(add)(5,y=11)) #两次传入参数

frist
second
16

继续懵逼的话就这样用吧。。。用多了就悟道了。。

4.装饰器语法糖

#再次变形。。。
def add(x,y):
 return x + y

def logger(fn):
 def wrapper(*args,**kwargs):
  print('begin')
  x = fn(*args,**kwargs)
  print('end')
  return x
 return wrapper

##调用方法1:
print(logger(add)(x=1111,y=1))

##调用方法2:
add = logger(add)
print(add(x=11,y=3))

##调用方法3: python给我们的语法糖 

@logger # 说明下边的函数,add 其实是 add = logger(add)
def add(x,y):
 return x + y


print(add(45,40))

begin
end
1112
begin
end
14
begin
end
85

三.复杂的栗子

import datetime
import time 

def logger(fn):
 def warp(*arges,**kwarges):
  print("arges={},kwarges={}".format(arges,kwarges)) #打印函数的两个参数
  start = datetime.datetime.now() #获取函数运行的开始时间
  ret = fn(*arges,**kwarges) #传入两个参数,调用add函数 此处有个return的值,需要一层一层的返回出去

  duratime = datetime.datetime.now() - start #获得函数的运行时间
  print("function {} took {}s".format(fn.__name__,duratime.total_seconds())) #打印函数的运行时间

  return ret #返回fn的结果 ,fn = x+y ==> 返回x+y的值。 x = 4 y= 11 ==> return 11
 return warp #返回warp的 return ==> ret 的return ==> return 11 函数的最终结果为11 

@logger
def add(x,y):
 print("oooooook")
 time.sleep(1.5)
 return x+y

print(add(4,y=11))

#如果充分理解了每个小部件,这个简单的完整版本也是很好理解的了。
#1,logger是个装饰器,而且使用了柯里化技术
#2,add 传参给logger的fn 形参,add(4,y=5)的两个参数传入给warp函数的两个形参
#
#
arges=(4,),kwarges={'y': 11}
oooooook
function add took 1.5017s
15

再次翻译

import datetime
import time 

#####################################装饰开始############################################
def logger(fn): #拿到函数名称
 def warp(*arges,**kwarges): #拿到函数带过来的参数开始装饰
  print("arges={},kwarges={}".format(arges,kwarges)) #来试试打印两个参数
  start = datetime.datetime.now() #
  ret = fn(*arges,**kwarges) # 此处调用add函数。开始执行函数,发现return语句。。ret的结果就是return。 

  duratime = datetime.datetime.now() - start #
  print("function {} took {}s".format(fn.__name__,duratime.total_seconds()))

  return ret #加工完成开始返回。warp的返回值是ret ,ret的返回值是 add函数的执行结果(原函数的功能完整的保留了) 
 return warp # logger的返回结果是warp,warp的返回值是ret ,ret的返回值是 add函数的执行结果(原函数的功能完整的保留了) 

#####################################装饰完成############################################

@logger #装饰工厂
######add是需要被装饰的函数,当你有这个想法的事情,其实事情已经开始发生了。
def add(x,y): # 此时add = logger(add) 此处前面的@logger标记就是想要让logger装饰器像一个工厂一样对add函数进行加工。
 print("oooooook")
 time.sleep(1.5)
 return x+y

print(add(4,y=11))
arges=(4,),kwarges={'y': 11}
oooooook
function add took 1.501604s
15

四.带参装饰器

1. 文档字符串

我们约定,在python函数的第一行需要对函数进行说明,使用三引号表示。
如果是英文说明,惯例首字母大写,第一行写概述,空一行,第三行写详细描述。
如果函数中有文档字符串,默认会放在函数的doc属性中,可以直接访问。

def add(x,y):
 """This is a function of addition"""
 a = x+y
 return x + y

print("function name is {}
function doc = {}

".format(add.__name__, add.__doc__))
print(help(add))
function name is add
function doc = This is a function of addition


Help on function add in module __main__:

add(x, y)
 This is a function of addition

None

2. 前面装饰器的副作用

前面装饰器基本上已经可以完成对函数进行加强的功能了,但是还有些瑕疵。比如原来函数的原属性已经被替换为装饰器的属性了。如下:

def add(x,y):
 return x + y

def logger(fn):
 "This is logger doc"
 def wrapper(*args,**kwargs):
  "This is wrapper doc"
  print('begin')
  x = fn(*args,**kwargs)
  print('end')
  return x
 return wrapper


@logger # add = logger(add)
def add(x,y):
 "This is add doc "
 print("name = {}
doc = {}".format(add.__name__,add.__doc__))
 return x + y


print(add(45,40))

#可以看出来add被装饰出来的函数(新的add)的属性已经全部改变了。

begin
name = wrapper
doc = This is wrapper doc
end
85

3. 解决方案一

三个函数:

第一个:copy原函数的属性 copy_properties
第二个:装饰器 logger
第三个:功能函数 add

def copy_properties(src, dst): # 把src的相关属性赋值给dst (fn,wrap)
 dst.__name__ = src.__name__
 dst.__doc__ = src.__doc__


def logger(fn):
 """'This is a function of logger'"""
 def wrap(*arges,**kwarges): # 
  """'This is a function of wrap'"""
  print('<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>')
  x = fn(*arges,**kwarges)
  #print("name={}
doc={}".format(add.__name__,add.__doc__))
  print('<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>') 
  return x 
 copy_properties(fn,wrap) #思考1:为什么放在这个位置调用
 return wrap

@logger
def add(x,y):
  """'This is a function of add'"""
  print("name={}
doc={}".format(add.__name__,add.__doc__))
  return x+y


print(add(4,6))

<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>
name=add
doc='This is a function of add'
<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>-<>
10

4. 解决方案二

但凡使用装饰器都会出现属性的这个问题,为什么不把copy_properties也做成装饰器呢?

三个函数:

第一个:copy原函数的装饰器 copy_properties1
第二个:装饰器 logger
第三个:功能函数 add

def copy_properties(src, dst): # 把src的相关属性赋值给dst (fn,wrap)
 dst.__name__ = src.__name__
 dst.__doc__ = src.__doc__

#利用前面的知识我们可以对copy_properties轻松进行变形
def copy_properties1(src): # 把src的相关属性赋值给dst (fn,wrap) 
 def _copy(dst):
  dst.__name__ = src.__name__
  dst.__doc__ = src.__doc__
  return dst 
 return _copy

带参装饰器:

def logger(fn): 
 """'This is a function of logger'"""
 @copy_properties1(fn) #wrap = copy_properties(fn)(wrap) 
 #== > 柯里化 两次传入参数 src = fn , dst = wrap 新的wrap函数的属性已经替换为原函数的。

 def wrap(*arges,**kwarges): #wrap = copy_properties(fn)(wrap)(*arges,**kwarges)  
  """'This is a function of wrap'"""
  print('>->->->->->->->->->->->->->->->->->->->->->->->->->')
  x = fn(*arges,**kwarges)
  print('<-<-<-<-<-<-<-<-<-<-<-<-<-<-<-<-<-<-<-<-<-<-<-<-<-<')
  return x 

 return wrap

@logger #add =logger(add)
def add(x,y):
  """'This is a function of add'"""
  print("name={}
doc={}".format(add.__name__,add.__doc__))
  return x+y



print(add(4,11))

以上就是详解Python 装饰器的详细内容,更多关于Python 装饰器的资料请关注三水点靠木其它相关文章!

Python 相关文章推荐
Python 命令行非阻塞输入的小例子
Sep 27 Python
从零学Python之入门(四)运算
May 27 Python
Python守护进程用法实例分析
Jun 04 Python
Python中用post、get方式提交数据的方法示例
Sep 22 Python
Python实现调度算法代码详解
Dec 01 Python
Python下载网络小说实例代码
Feb 03 Python
Python模拟登录之滑块验证码的破解(实例代码)
Nov 18 Python
Python2与Python3的区别点整理
Dec 12 Python
Pytorch根据layers的name冻结训练方式
Jan 06 Python
python-docx文件定位读取过程(尝试替换)
Feb 13 Python
一文了解python 3 字符串格式化 F-string 用法
Mar 04 Python
python如何查看网页代码
Jun 07 Python
用python实现前向分词最大匹配算法的示例代码
Aug 06 #Python
Python爬虫防封ip的一些技巧
Aug 06 #Python
Python无损压缩图片的示例代码
Aug 06 #Python
通过实例简单了解python yield使用方法
Aug 06 #Python
Python切片列表字符串如何实现切换
Aug 06 #Python
Python爬虫爬取微信朋友圈
Aug 06 #Python
Python变量及数据类型用法原理汇总
Aug 06 #Python
You might like
基于php常用函数总结(数组,字符串,时间,文件操作)
2013/06/27 PHP
php对二维数组进行排序的简单实例
2013/12/19 PHP
php导入模块文件分享
2015/03/17 PHP
php之可变函数的实例详解
2017/09/13 PHP
php 输出缓冲 Output Control用法实例详解
2020/03/03 PHP
prototype1.4中文手册
2006/09/22 Javascript
显示js对象所有属性和方法的函数
2009/10/16 Javascript
JS OOP包机制,类创建的方法定义
2009/11/02 Javascript
jquery插件之文字间歇自动向上滚动效果代码
2016/02/25 Javascript
Js获取当前日期时间及格式化代码
2016/09/17 Javascript
移动端使用localStorage缓存Js和css文的方法(web开发)
2016/09/20 Javascript
详解jquery easyui之datagrid使用参考
2016/12/05 Javascript
Vue 2.X的状态管理vuex记录详解
2017/03/23 Javascript
javascript 中select框触发事件过程的分析
2017/08/01 Javascript
详解vue中使用express+fetch获取本地json文件
2017/10/10 Javascript
浅谈AngularJS中$http服务的简单用法
2018/05/15 Javascript
vue结合element-ui使用示例
2019/01/24 Javascript
通过实例解析js简易模块加载器
2019/06/17 Javascript
ES6基础之 Promise 对象用法实例详解
2019/08/22 Javascript
小程序websocket心跳库(websocket-heartbeat-miniprogram)
2020/02/23 Javascript
[03:04]DOTA2超级联赛专访ZSMJ “莫名其妙”的逆袭
2013/05/23 DOTA
Python实现简单多线程任务队列
2016/02/27 Python
python中常用的九种预处理方法分享
2016/09/11 Python
Python实现使用request模块下载图片demo示例
2019/05/24 Python
python实现共轭梯度法
2019/07/03 Python
python中wx模块的具体使用方法
2020/05/15 Python
Python3+RIDE+RobotFramework自动化测试框架搭建过程详解
2020/09/23 Python
利用HTML5+css3+jquery+weui实现仿微信聊天界面功能
2018/01/08 HTML / CSS
加拿大著名时装品牌:SOIA & KYO
2016/08/23 全球购物
阿迪达斯越南官网:adidas越南
2020/07/19 全球购物
廉政教育心得体会
2014/01/01 职场文书
未婚证明格式
2015/06/15 职场文书
2016年六一文艺汇演开幕词
2016/03/04 职场文书
2019年健身俱乐部的创业计划书
2019/08/26 职场文书
详解Laravel框架的依赖注入功能
2021/05/27 PHP
Python matplotlib绘制条形统计图 处理多个实验多组观测值
2022/04/21 Python