python生成tensorflow输入输出的图像格式的方法


Posted in Python onFebruary 12, 2018

TensorFLow能够识别的图像文件,可以通过numpy,使用tf.Variable或者tf.placeholder加载进tensorflow;也可以通过自带函数(tf.read)读取,当图像文件过多时,一般使用pipeline通过队列的方法进行读取。下面我们介绍两种生成tensorflow的图像格式的方法,供给tensorflow的graph的输入与输出。

import cv2 
import numpy as np 
import h5py 
 
height = 460 
width = 345 
 
with h5py.File('make3d_dataset_f460.mat','r') as f: 
  images = f['images'][:] 
   
image_num = len(images) 
 
data = np.zeros((image_num, height, width, 3), np.uint8) 
data = images.transpose((0,3,2,1))

先生成图像文件的路径:ls *.jpg> list.txt

import cv2 
import numpy as np 
 
image_path = './' 
list_file = 'list.txt' 
height = 48 
width = 48 
 
image_name_list = [] # read image 
with open(image_path + list_file) as fid: 
  image_name_list = [x.strip() for x in fid.readlines()] 
image_num = len(image_name_list) 
 
data = np.zeros((image_num, height, width, 3), np.uint8) 
 
for idx in range(image_num): 
  img = cv2.imread(image_name_list[idx]) 
  img = cv2.resize(img, (height, width)) 
  data[idx, :, :, :] = img

2 Tensorflow自带函数读取

def get_image(image_path): 
  """Reads the jpg image from image_path. 
  Returns the image as a tf.float32 tensor 
  Args: 
    image_path: tf.string tensor 
  Reuturn: 
    the decoded jpeg image casted to float32 
  """ 
  return tf.image.convert_image_dtype( 
    tf.image.decode_jpeg( 
      tf.read_file(image_path), channels=3), 
    dtype=tf.uint8)

pipeline读取方法

# Example on how to use the tensorflow input pipelines. The explanation can be found here ischlag.github.io. 
import tensorflow as tf 
import random 
from tensorflow.python.framework import ops 
from tensorflow.python.framework import dtypes 
 
dataset_path   = "/path/to/your/dataset/mnist/" 
test_labels_file = "test-labels.csv" 
train_labels_file = "train-labels.csv" 
 
test_set_size = 5 
 
IMAGE_HEIGHT = 28 
IMAGE_WIDTH  = 28 
NUM_CHANNELS = 3 
BATCH_SIZE  = 5 
 
def encode_label(label): 
 return int(label) 
 
def read_label_file(file): 
 f = open(file, "r") 
 filepaths = [] 
 labels = [] 
 for line in f: 
  filepath, label = line.split(",") 
  filepaths.append(filepath) 
  labels.append(encode_label(label)) 
 return filepaths, labels 
 
# reading labels and file path 
train_filepaths, train_labels = read_label_file(dataset_path + train_labels_file) 
test_filepaths, test_labels = read_label_file(dataset_path + test_labels_file) 
 
# transform relative path into full path 
train_filepaths = [ dataset_path + fp for fp in train_filepaths] 
test_filepaths = [ dataset_path + fp for fp in test_filepaths] 
 
# for this example we will create or own test partition 
all_filepaths = train_filepaths + test_filepaths 
all_labels = train_labels + test_labels 
 
all_filepaths = all_filepaths[:20] 
all_labels = all_labels[:20] 
 
# convert string into tensors 
all_images = ops.convert_to_tensor(all_filepaths, dtype=dtypes.string) 
all_labels = ops.convert_to_tensor(all_labels, dtype=dtypes.int32) 
 
# create a partition vector 
partitions = [0] * len(all_filepaths) 
partitions[:test_set_size] = [1] * test_set_size 
random.shuffle(partitions) 
 
# partition our data into a test and train set according to our partition vector 
train_images, test_images = tf.dynamic_partition(all_images, partitions, 2) 
train_labels, test_labels = tf.dynamic_partition(all_labels, partitions, 2) 
 
# create input queues 
train_input_queue = tf.train.slice_input_producer( 
                  [train_images, train_labels], 
                  shuffle=False) 
test_input_queue = tf.train.slice_input_producer( 
                  [test_images, test_labels], 
                  shuffle=False) 
 
# process path and string tensor into an image and a label 
file_content = tf.read_file(train_input_queue[0]) 
train_image = tf.image.decode_jpeg(file_content, channels=NUM_CHANNELS) 
train_label = train_input_queue[1] 
 
file_content = tf.read_file(test_input_queue[0]) 
test_image = tf.image.decode_jpeg(file_content, channels=NUM_CHANNELS) 
test_label = test_input_queue[1] 
 
# define tensor shape 
train_image.set_shape([IMAGE_HEIGHT, IMAGE_WIDTH, NUM_CHANNELS]) 
test_image.set_shape([IMAGE_HEIGHT, IMAGE_WIDTH, NUM_CHANNELS]) 
 
 
# collect batches of images before processing 
train_image_batch, train_label_batch = tf.train.batch( 
                  [train_image, train_label], 
                  batch_size=BATCH_SIZE 
                  #,num_threads=1 
                  ) 
test_image_batch, test_label_batch = tf.train.batch( 
                  [test_image, test_label], 
                  batch_size=BATCH_SIZE 
                  #,num_threads=1 
                  ) 
 
print "input pipeline ready" 
 
with tf.Session() as sess: 
  
 # initialize the variables 
 sess.run(tf.initialize_all_variables()) 
  
 # initialize the queue threads to start to shovel data 
 coord = tf.train.Coordinator() 
 threads = tf.train.start_queue_runners(coord=coord) 
 
 print "from the train set:" 
 for i in range(20): 
  print sess.run(train_label_batch) 
 
 print "from the test set:" 
 for i in range(10): 
  print sess.run(test_label_batch) 
 
 # stop our queue threads and properly close the session 
 coord.request_stop() 
 coord.join(threads) 
 sess.close()

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python的Django框架中从url中捕捉文本的方法
Jul 20 Python
Python微信企业号开发之回调模式接收微信端客户端发送消息及被动返回消息示例
Aug 21 Python
Python正则表达式知识汇总
Sep 22 Python
python matplotlib画图实例代码分享
Dec 27 Python
对Xpath 获取子标签下所有文本的方法详解
Jan 02 Python
django的csrf实现过程详解
Jul 26 Python
Python 脚本实现淘宝准点秒杀功能
Nov 13 Python
基于python实现计算且附带进度条代码实例
Mar 31 Python
使用Python三角函数公式计算三角形的夹角案例
Apr 15 Python
Mysql数据库反向生成Django里面的models指令方式
May 18 Python
python字典的值可以修改吗
Jun 29 Python
pandas apply使用多列计算生成新的列实现示例
Feb 24 Python
Flask解决跨域的问题示例代码
Feb 12 #Python
tensorflow实现对图片的读取的示例代码
Feb 12 #Python
python中数据爬虫requests库使用方法详解
Feb 11 #Python
python 接口测试response返回数据对比的方法
Feb 11 #Python
使用Python读取大文件的方法
Feb 11 #Python
python脚本作为Windows服务启动代码详解
Feb 11 #Python
分析Python读取文件时的路径问题
Feb 11 #Python
You might like
深入了解php4(2)--重访过去
2006/10/09 PHP
php 取得瑞年与平年的天数的代码
2009/08/10 PHP
discuz程序的PHP加密函数原理分析
2011/08/05 PHP
php计算十二星座的函数代码
2012/08/21 PHP
zf框架的校验器InArray使用示例
2014/03/13 PHP
php中使用GD库做验证码
2016/03/31 PHP
php实现等比例不失真缩放上传图片的方法
2016/11/14 PHP
php实现的mongoDB单例模式操作类
2018/01/20 PHP
php传值和传引用的区别点总结
2019/11/19 PHP
jQuery对象与DOM对象之间的相互转换
2015/03/03 Javascript
Backbone View 之间通信的三种方式
2016/08/09 Javascript
基于angularjs实现图片放大镜效果
2016/08/31 Javascript
js实现简单的网页换肤效果
2017/01/18 Javascript
轻松理解vue的双向数据绑定问题
2017/10/30 Javascript
vue实现购物车小案例
2019/09/27 Javascript
js函数柯里化的方法和作用实例分析
2020/04/11 Javascript
vue实现移动端触屏拖拽功能
2020/08/21 Javascript
[47:02]2018DOTA2亚洲邀请赛3月29日 小组赛B组 VP VS paiN
2018/03/30 DOTA
[51:44]2018DOTA2亚洲邀请赛 4.3 突围赛 Optic vs iG 第二场
2018/04/04 DOTA
[43:57]LGD vs Mineski 2018国际邀请赛小组赛BO2 第二场 8.19
2018/08/21 DOTA
Python科学计算之NumPy入门教程
2017/01/15 Python
Python使用combinations实现排列组合的方法
2018/11/13 Python
浅谈PyQt5 的帮助文档查找方法,可以查看每个类的方法
2019/06/25 Python
Python中遍历列表的方法总结
2019/06/27 Python
Python整数与Numpy数据溢出问题解决
2019/09/11 Python
浅谈Python 函数式编程
2020/06/20 Python
pytorch 计算ConvTranspose1d输出特征大小方式
2020/06/23 Python
使用CSS3制作倾斜导航条和毛玻璃效果
2017/09/12 HTML / CSS
html5实现移动端适配完美写法
2017/11/16 HTML / CSS
韩国三星集团旗下时尚品牌官网:SSF SHOP
2016/08/02 全球购物
心理健康日活动总结
2014/05/08 职场文书
教师一帮一活动总结
2014/07/08 职场文书
中学教师暑期培训方案
2014/08/27 职场文书
机修车间主任岗位职责
2015/04/08 职场文书
让生命充满爱观后感
2015/06/08 职场文书
Nginx开源可视化配置工具NginxConfig使用教程
2022/06/21 Servers