keras的三种模型实现与区别说明


Posted in Python onJuly 03, 2020

前言

一、keras提供了三种定义模型的方式

1. 序列式(Sequential) API

序贯(sequential)API允许你为大多数问题逐层堆叠创建模型。虽然说对很多的应用来说,这样的一个手法很简单也解决了很多深度学习网络结构的构建,但是它也有限制-它不允许你创建模型有共享层或有多个输入或输出的网络。

2. 函数式(Functional) API

Keras函数式(functional)API为构建网络模型提供了更为灵活的方式。

它允许你定义多个输入或输出模型以及共享图层的模型。除此之外,它允许你定义动态(ad-hoc)的非周期性(acyclic)网络图。

模型是通过创建层的实例(layer instances)并将它们直接相互连接成对来定义的,然后定义一个模型(model)来指定那些层是要作为这个模型的输入和输出。

3.子类(Subclassing) API

补充知识:keras pytorch 构建模型对比

使用CIFAR10数据集,用三种框架构建Residual_Network作为例子,比较框架间的异同。

数据集格式

pytorch的数据集格式

import torch
import torch.nn as nn
import torchvision

# Download and construct CIFAR-10 dataset.
train_dataset = torchvision.datasets.CIFAR10(root='../../data/',
                       train=True, 
                       download=True)

# Fetch one data pair (read data from disk).
image, label = train_dataset[0]
print (image.size()) # torch.Size([3, 32, 32])
print (label) # 6
print (train_dataset.data.shape) # (50000, 32, 32, 3)
# type(train_dataset.targets)==list
print (len(train_dataset.targets)) # 50000

# Data loader (this provides queues and threads in a very simple way).
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
                      batch_size=64, 
                      shuffle=True)
"""
# 演示DataLoader返回的数据结构
# When iteration starts, queue and thread start to load data from files.
data_iter = iter(train_loader)

# Mini-batch images and labels.
images, labels = data_iter.next()
print(images.shape) # torch.Size([100, 3, 32, 32])
print(labels.shape) 
# torch.Size([100]) 可见经过DataLoader后,labels由list变成了pytorch内置的tensor格式
"""
# 一般使用的话是下面这种
# Actual usage of the data loader is as below.
for images, labels in train_loader:
  # Training code should be written here.
  pass

keras的数据格式

import keras
from keras.datasets import cifar10

(train_x, train_y) , (test_x, test_y) = cifar10.load_data()
print(train_x.shape) # ndarray 类型: (50000, 32, 32, 3)
print(train_y.shape) # (50000, 1)

输入网络的数据格式不同

"""
1: pytorch 都是内置torch.xxTensor输入网络,而keras的则是原生ndarray类型
2: 对于multi-class的其中一种loss,即cross-entropy loss 而言,
  pytorch的api为 CorssEntropyLoss, 但y_true不能用one-hoe编码!这与keras,tensorflow	    都不同。tensorflow相应的api为softmax_cross_entropy
  他们的api都仅限于multi-class classification
3*: 其实上面提到的api都属于categorical cross-entropy loss,
  又叫 softmax loss,是函数内部先进行了 softmax 激活,再经过cross-entropy loss。
  这个loss是cross-entropy loss的变种,
  cross-entropy loss又叫logistic loss 或 multinomial logistic loss。
  实现这种loss的函数不包括激活函数,需要自定义。
  pytorch对应的api为BCEloss(仅限于 binary classification),
  tensorflow 对应的api为 log_loss。
  cross-entropy loss的第二个变种是 binary cross-entropy loss 又叫 sigmoid cross-  entropy loss。
  函数内部先进行了sigmoid激活,再经过cross-entropy loss。
  pytorch对应的api为BCEWithLogitsLoss,
  tensorflow对应的api为sigmoid_cross_entropy
"""

# pytorch
criterion = nn.CrossEntropyLoss()
...
for epoch in range(num_epochs):
  for i, (images, labels) in enumerate(train_loader):
    images = images.to(device)
    labels = labels.to(device)
    
    # Forward pass
    outputs = model(images)
    # 对于multi-class cross-entropy loss
    # 输入y_true不需要one-hot编码
    loss = criterion(outputs, labels)
...

# keras
# 对于multi-class cross-entropy loss
# 输入y_true需要one-hot编码
train_y = keras.utils.to_categorical(train_y,10)
...
model.fit_generator(datagen.flow(train_x, train_y, batch_size=128),
          validation_data=[test_x,test_y],
          epochs=epochs,steps_per_epoch=steps_per_epoch, verbose=1)
...

整体流程

keras 流程

model = myModel()
model.compile(optimizer=Adam(0.001),loss="categorical_crossentropy",metrics=["accuracy"])
model.fit_generator(datagen.flow(train_x, train_y, batch_size=128),
          validation_data=[test_x,test_y],
          epochs=epochs,steps_per_epoch=steps_per_epoch, verbose=1, workers=4)
#Evaluate the accuracy of the test dataset
accuracy = model.evaluate(x=test_x,y=test_y,batch_size=128)
# 保存整个网络
model.save("cifar10model.h5")
"""
# https://blog.csdn.net/jiandanjinxin/article/details/77152530
# 使用
# keras.models.load_model("cifar10model.h5")

# 只保存architecture
# json_string = model.to_json() 
# open('my_model_architecture.json','w').write(json_string)  
# 使用
# from keras.models import model_from_json
#model = model_from_json(open('my_model_architecture.json').read()) 

# 只保存weights
# model.save_weights('my_model_weights.h5') 
#需要在代码中初始化一个完全相同的模型 
# model.load_weights('my_model_weights.h5')
#需要加载权重到不同的网络结构(有些层一样)中,例如fine-tune或transfer-learning,可以通过层名字来加载模型 
# model.load_weights('my_model_weights.h5', by_name=True)
"""

pytorch 流程

model = myModel()
# Loss and optimizer
criterion = nn.CrossEntropyLoss()

for epoch in range(num_epochs):
  for i, (images, labels) in enumerate(train_loader):
    images = images.to(device)
    labels = labels.to(device)
    
    # Forward pass
    outputs = model(images)
    loss = criterion(outputs, labels)
    
    # Backward and optimize
		# 将上次迭代计算的梯度值清0
    optimizer.zero_grad()
    # 反向传播,计算梯度值
    loss.backward()
    # 更新权值参数
    optimizer.step()
    
# model.eval(),让model变成测试模式,对dropout和batch normalization的操作在训练和测试的时候是不一样的
# eval()时,pytorch会自动把BN和DropOut固定住,不会取平均,而是用训练好的值。
# 不然的话,一旦test的batch_size过小,很容易就会被BN层导致生成图片颜色失真极大。
model.eval()
with torch.no_grad():
  correct = 0
  total = 0
  for images, labels in test_loader:
    images = images.to(device)
    labels = labels.to(device)
    outputs = model(images)
    _, predicted = torch.max(outputs.data, 1)
    total += labels.size(0)
    correct += (predicted == labels).sum().item()

  print('Accuracy of the model on the test images: {} %'.format(100 * correct / total))

# Save the model checkpoint
# 这是只保存了weights
torch.save(model.state_dict(), 'resnet.ckpt')
"""
# 使用
# myModel.load_state_dict(torch.load('params.ckpt'))
# 若想保存整个网络(architecture + weights)
# torch.save(resnet, 'model.ckpt')
# 使用
#model = torch.load('model.ckpt')
"""

对比流程

#https://blog.csdn.net/dss_dssssd/article/details/83892824
"""
1: 准备数据(注意数据格式不同)
2: 定义网络结构model
3: 定义损失函数
4: 定义优化算法 optimizer
5: 训练-keras
	5.1:编译模型(传入loss function和optimizer等)
	5.2:训练模型(fit or fit_generator,传入数据)
5: 训练-pytorch
迭代训练:
	5.1:准备好tensor形式的输入数据和标签(可选)
	5.2:前向传播计算网络输出output和计算损失函数loss
	5.3:反向传播更新参数
		以下三句话一句也不能少:
		5.3.1:将上次迭代计算的梯度值清0
			optimizer.zero_grad()
		5.3.2:反向传播,计算梯度值
			loss.backward()
		5.3.3:更新权值参数
			optimizer.step()
6: 在测试集上测试-keras
	model.evaluate
6: 在测试集上测试-pytorch
  遍历测试集,自定义metric
7: 保存网络(可选) 具体实现参考上面代码
"""

构建网络

对比网络

1、对于keras,不需要input_channels,函数内部会自动获得,而pytorch则需要显示声明input_channels

2、对于pytorch Conv2d需要指定padding,而keras的则是same和valid两种选项(valid即padding=0)

3、keras的Flatten操作可以视作pytorch中的view

4、keras的dimension一般顺序是(H, W, C) (tensorflow 为backend的话),而pytorch的顺序则是( C, H, W)

5、具体的变换可以参照下方,但由于没有学过pytorch,keras也刚入门,不能保证正确,日后学的更深入了之后再来看看。

pytorch 构建Residual-network

import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms


# Device configuration
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

# Hyper-parameters
num_epochs = 80
learning_rate = 0.001

# Image preprocessing modules
transform = transforms.Compose([
  transforms.Pad(4),
  transforms.RandomHorizontalFlip(),
  transforms.RandomCrop(32),
  transforms.ToTensor()])

# CIFAR-10 dataset
# train_dataset.data.shape
#Out[31]: (50000, 32, 32, 3)
# train_dataset.targets list
# len(list)=5000
train_dataset = torchvision.datasets.CIFAR10(root='./data/',
                       train=True, 
                       transform=transform,
                       download=True)

test_dataset = torchvision.datasets.CIFAR10(root='../../data/',
                      train=False, 
                      transform=transforms.ToTensor())

# Data loader
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
                      batch_size=100, 
                      shuffle=True)

test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
                     batch_size=100, 
                     shuffle=False)

# 3x3 convolution
def conv3x3(in_channels, out_channels, stride=1):
  return nn.Conv2d(in_channels, out_channels, kernel_size=3, 
           stride=stride, padding=1, bias=False)

# Residual block
class ResidualBlock(nn.Module):
  def __init__(self, in_channels, out_channels, stride=1, downsample=None):
    super(ResidualBlock, self).__init__()
    self.conv1 = conv3x3(in_channels, out_channels, stride)
    self.bn1 = nn.BatchNorm2d(out_channels)
    self.relu = nn.ReLU(inplace=True)
    self.conv2 = conv3x3(out_channels, out_channels)
    self.bn2 = nn.BatchNorm2d(out_channels)
    self.downsample = downsample
    
  def forward(self, x):
    residual = x
    out = self.conv1(x)
    out = self.bn1(out)
    out = self.relu(out)
    out = self.conv2(out)
    out = self.bn2(out)
    if self.downsample:
      residual = self.downsample(x)
    out += residual
    out = self.relu(out)
    return out

# ResNet
class ResNet(nn.Module):
  def __init__(self, block, layers, num_classes=10):
    super(ResNet, self).__init__()
    self.in_channels = 16
    self.conv = conv3x3(3, 16)
    self.bn = nn.BatchNorm2d(16)
    self.relu = nn.ReLU(inplace=True)
    self.layer1 = self.make_layer(block, 16, layers[0])
    self.layer2 = self.make_layer(block, 32, layers[1], 2)
    self.layer3 = self.make_layer(block, 64, layers[2], 2)
    self.avg_pool = nn.AvgPool2d(8)
    self.fc = nn.Linear(64, num_classes)
    
  def make_layer(self, block, out_channels, blocks, stride=1):
    downsample = None
    if (stride != 1) or (self.in_channels != out_channels):
      downsample = nn.Sequential(
        conv3x3(self.in_channels, out_channels, stride=stride),
        nn.BatchNorm2d(out_channels))
    layers = []
    layers.append(block(self.in_channels, out_channels, stride, downsample))
    self.in_channels = out_channels
    for i in range(1, blocks):
      layers.append(block(out_channels, out_channels))
    # [*[1,2,3]]
    # Out[96]: [1, 2, 3]
    return nn.Sequential(*layers)
  
  def forward(self, x):
    out = self.conv(x) # out.shape:torch.Size([100, 16, 32, 32])
    out = self.bn(out)
    out = self.relu(out)
    out = self.layer1(out)
    out = self.layer2(out)
    out = self.layer3(out)
    out = self.avg_pool(out)
    out = out.view(out.size(0), -1)
    out = self.fc(out)
    return out
  
model = ResNet(ResidualBlock, [2, 2, 2]).to(device)

# pip install torchsummary or
# git clone https://github.com/sksq96/pytorch-summary
from torchsummary import summary
# input_size=(C,H,W)
summary(model, input_size=(3, 32, 32))

images,labels = iter(train_loader).next()
outputs = model(images)

# Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)

# For updating learning rate
def update_lr(optimizer, lr):  
  for param_group in optimizer.param_groups:
    param_group['lr'] = lr

# Train the model
total_step = len(train_loader)
curr_lr = learning_rate
for epoch in range(num_epochs):
  for i, (images, labels) in enumerate(train_loader):
    images = images.to(device)
    labels = labels.to(device)
    
    # Forward pass
    outputs = model(images)
    loss = criterion(outputs, labels)
    
    # Backward and optimize
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
    
    if (i+1) % 100 == 0:
      print ("Epoch [{}/{}], Step [{}/{}] Loss: {:.4f}"
          .format(epoch+1, num_epochs, i+1, total_step, loss.item()))

  # Decay learning rate
  if (epoch+1) % 20 == 0:
    curr_lr /= 3
    update_lr(optimizer, curr_lr)

# Test the model
model.eval()
with torch.no_grad():
  correct = 0
  total = 0
  for images, labels in test_loader:
    images = images.to(device)
    labels = labels.to(device)
    outputs = model(images)
    _, predicted = torch.max(outputs.data, 1)
    total += labels.size(0)
    correct += (predicted == labels).sum().item()

  print('Accuracy of the model on the test images: {} %'.format(100 * correct / total))

# Save the model checkpoint
torch.save(model.state_dict(), 'resnet.ckpt')

keras 对应的网络构建部分

"""
#pytorch
def conv3x3(in_channels, out_channels, stride=1):
  return nn.Conv2d(in_channels, out_channels, kernel_size=3, 
           stride=stride, padding=1, bias=False)
"""

def conv3x3(x,out_channels, stride=1):
  #out = spatial_2d_padding(x,padding=((1, 1), (1, 1)), data_format="channels_last")
  return Conv2D(filters=out_channels, kernel_size=[3,3], strides=(stride,stride),padding="same")(x)

"""
# pytorch
# Residual block
class ResidualBlock(nn.Module):
  def __init__(self, in_channels, out_channels, stride=1, downsample=None):
    super(ResidualBlock, self).__init__()
    self.conv1 = conv3x3(in_channels, out_channels, stride)
    self.bn1 = nn.BatchNorm2d(out_channels)
    self.relu = nn.ReLU(inplace=True)
    self.conv2 = conv3x3(out_channels, out_channels)
    self.bn2 = nn.BatchNorm2d(out_channels)
    self.downsample = downsample
    
  def forward(self, x):
    residual = x
    out = self.conv1(x)
    out = self.bn1(out)
    out = self.relu(out)
    out = self.conv2(out)
    out = self.bn2(out)
    if self.downsample:
      residual = self.downsample(x)
    out += residual
    out = self.relu(out)
    return out
"""
def ResidualBlock(x, out_channels, stride=1, downsample=False):
  residual = x
  out = conv3x3(x, out_channels,stride)
  out = BatchNormalization()(out)
  out = Activation("relu")(out)
  out = conv3x3(out, out_channels)
  out = BatchNormalization()(out)
  if downsample:
    residual = conv3x3(residual, out_channels, stride=stride)
    residual = BatchNormalization()(residual)
  out = keras.layers.add([residual,out])
  out = Activation("relu")(out)
  return out
"""
#pytorch
def make_layer(self, block, out_channels, blocks, stride=1):
    downsample = None
    if (stride != 1) or (self.in_channels != out_channels):
      downsample = nn.Sequential(
        conv3x3(self.in_channels, out_channels, stride=stride),
        nn.BatchNorm2d(out_channels))
    layers = []
    layers.append(block(self.in_channels, out_channels, stride, downsample))
    self.in_channels = out_channels
    for i in range(1, blocks):
      layers.append(block(out_channels, out_channels))
    # [*[1,2,3]]
    # Out[96]: [1, 2, 3]
    return nn.Sequential(*layers)
"""
def make_layer(x, out_channels, blocks, stride=1):
    # tf backend: x.output_shape[-1]==out_channels
    #print("x.shape[-1] ",x.shape[-1])
    downsample = False
    if (stride != 1) or (out_channels != x.shape[-1]):
      downsample = True
    out = ResidualBlock(x, out_channels, stride, downsample)
    for i in range(1, blocks):
      out = ResidualBlock(out, out_channels)
    return out

def KerasResidual(input_shape):
  images = Input(input_shape)
  out = conv3x3(images,16) # out.shape=(None, 32, 32, 16) 
  out = BatchNormalization()(out)
  out = Activation("relu")(out)
  layer1_out = make_layer(out, 16, layers[0])
  layer2_out = make_layer(layer1_out, 32, layers[1], 2)
  layer3_out = make_layer(layer2_out, 64, layers[2], 2)
  out = AveragePooling2D(pool_size=(8,8))(layer3_out)
  out = Flatten()(out)
  # pytorch 的nn.CrossEntropyLoss()会首先执行softmax计算
  # 当换成keras时,没有tf类似的softmax_cross_entropy
  # 自带的categorical_crossentropy不会执行激活操作,因此得在Dense层加上activation
  out = Dense(units=10, activation="softmax")(out)
  model = Model(inputs=images,outputs=out)
  return model

input_shape=(32, 32, 3)
layers=[2, 2, 2]
mymodel = KerasResidual(input_shape)
mymodel.summary()

pytorch model summary

----------------------------------------------------------------
    Layer (type)        Output Shape     Param #
================================================================
      Conv2d-1      [-1, 16, 32, 32]       432
    BatchNorm2d-2      [-1, 16, 32, 32]       32
       ReLU-3      [-1, 16, 32, 32]        0
      Conv2d-4      [-1, 16, 32, 32]      2,304
    BatchNorm2d-5      [-1, 16, 32, 32]       32
       ReLU-6      [-1, 16, 32, 32]        0
      Conv2d-7      [-1, 16, 32, 32]      2,304
    BatchNorm2d-8      [-1, 16, 32, 32]       32
       ReLU-9      [-1, 16, 32, 32]        0
  ResidualBlock-10      [-1, 16, 32, 32]        0
      Conv2d-11      [-1, 16, 32, 32]      2,304
   BatchNorm2d-12      [-1, 16, 32, 32]       32
       ReLU-13      [-1, 16, 32, 32]        0
      Conv2d-14      [-1, 16, 32, 32]      2,304
   BatchNorm2d-15      [-1, 16, 32, 32]       32
       ReLU-16      [-1, 16, 32, 32]        0
  ResidualBlock-17      [-1, 16, 32, 32]        0
      Conv2d-18      [-1, 32, 16, 16]      4,608
   BatchNorm2d-19      [-1, 32, 16, 16]       64
       ReLU-20      [-1, 32, 16, 16]        0
      Conv2d-21      [-1, 32, 16, 16]      9,216
   BatchNorm2d-22      [-1, 32, 16, 16]       64
      Conv2d-23      [-1, 32, 16, 16]      4,608
   BatchNorm2d-24      [-1, 32, 16, 16]       64
       ReLU-25      [-1, 32, 16, 16]        0
  ResidualBlock-26      [-1, 32, 16, 16]        0
      Conv2d-27      [-1, 32, 16, 16]      9,216
   BatchNorm2d-28      [-1, 32, 16, 16]       64
       ReLU-29      [-1, 32, 16, 16]        0
      Conv2d-30      [-1, 32, 16, 16]      9,216
   BatchNorm2d-31      [-1, 32, 16, 16]       64
       ReLU-32      [-1, 32, 16, 16]        0
  ResidualBlock-33      [-1, 32, 16, 16]        0
      Conv2d-34       [-1, 64, 8, 8]     18,432
   BatchNorm2d-35       [-1, 64, 8, 8]       128
       ReLU-36       [-1, 64, 8, 8]        0
      Conv2d-37       [-1, 64, 8, 8]     36,864
   BatchNorm2d-38       [-1, 64, 8, 8]       128
      Conv2d-39       [-1, 64, 8, 8]     18,432
   BatchNorm2d-40       [-1, 64, 8, 8]       128
       ReLU-41       [-1, 64, 8, 8]        0
  ResidualBlock-42       [-1, 64, 8, 8]        0
      Conv2d-43       [-1, 64, 8, 8]     36,864
   BatchNorm2d-44       [-1, 64, 8, 8]       128
       ReLU-45       [-1, 64, 8, 8]        0
      Conv2d-46       [-1, 64, 8, 8]     36,864
   BatchNorm2d-47       [-1, 64, 8, 8]       128
       ReLU-48       [-1, 64, 8, 8]        0
  ResidualBlock-49       [-1, 64, 8, 8]        0
    AvgPool2d-50       [-1, 64, 1, 1]        0
      Linear-51          [-1, 10]       650
================================================================
Total params: 195,738
Trainable params: 195,738
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.01
Forward/backward pass size (MB): 3.63
Params size (MB): 0.75
Estimated Total Size (MB): 4.38
----------------------------------------------------------------

keras model summary

__________________________________________________________________________________________________
Layer (type)          Output Shape     Param #   Connected to           
==================================================================================================
input_26 (InputLayer)      (None, 32, 32, 3)  0                      
__________________________________________________________________________________________________
conv2d_103 (Conv2D)       (None, 32, 32, 16)  448     input_26[0][0]          
__________________________________________________________________________________________________
batch_normalization_99 (BatchNo (None, 32, 32, 16)  64     conv2d_103[0][0]         
__________________________________________________________________________________________________
activation_87 (Activation)   (None, 32, 32, 16)  0      batch_normalization_99[0][0]   
__________________________________________________________________________________________________
conv2d_104 (Conv2D)       (None, 32, 32, 16)  2320    activation_87[0][0]       
__________________________________________________________________________________________________
batch_normalization_100 (BatchN (None, 32, 32, 16)  64     conv2d_104[0][0]         
__________________________________________________________________________________________________
activation_88 (Activation)   (None, 32, 32, 16)  0      batch_normalization_100[0][0]  
__________________________________________________________________________________________________
conv2d_105 (Conv2D)       (None, 32, 32, 16)  2320    activation_88[0][0]       
__________________________________________________________________________________________________
batch_normalization_101 (BatchN (None, 32, 32, 16)  64     conv2d_105[0][0]         
__________________________________________________________________________________________________
add_34 (Add)          (None, 32, 32, 16)  0      activation_87[0][0]       
                                 batch_normalization_101[0][0]  
__________________________________________________________________________________________________
activation_89 (Activation)   (None, 32, 32, 16)  0      add_34[0][0]           
__________________________________________________________________________________________________
conv2d_106 (Conv2D)       (None, 32, 32, 16)  2320    activation_89[0][0]       
__________________________________________________________________________________________________
batch_normalization_102 (BatchN (None, 32, 32, 16)  64     conv2d_106[0][0]         
__________________________________________________________________________________________________
activation_90 (Activation)   (None, 32, 32, 16)  0      batch_normalization_102[0][0]  
__________________________________________________________________________________________________
conv2d_107 (Conv2D)       (None, 32, 32, 16)  2320    activation_90[0][0]       
__________________________________________________________________________________________________
batch_normalization_103 (BatchN (None, 32, 32, 16)  64     conv2d_107[0][0]         
__________________________________________________________________________________________________
add_35 (Add)          (None, 32, 32, 16)  0      activation_89[0][0]       
                                 batch_normalization_103[0][0]  
__________________________________________________________________________________________________
activation_91 (Activation)   (None, 32, 32, 16)  0      add_35[0][0]           
__________________________________________________________________________________________________
conv2d_108 (Conv2D)       (None, 16, 16, 32)  4640    activation_91[0][0]       
__________________________________________________________________________________________________
batch_normalization_104 (BatchN (None, 16, 16, 32)  128     conv2d_108[0][0]         
__________________________________________________________________________________________________
activation_92 (Activation)   (None, 16, 16, 32)  0      batch_normalization_104[0][0]  
__________________________________________________________________________________________________
conv2d_110 (Conv2D)       (None, 16, 16, 32)  4640    activation_91[0][0]       
__________________________________________________________________________________________________
conv2d_109 (Conv2D)       (None, 16, 16, 32)  9248    activation_92[0][0]       
__________________________________________________________________________________________________
batch_normalization_106 (BatchN (None, 16, 16, 32)  128     conv2d_110[0][0]         
__________________________________________________________________________________________________
batch_normalization_105 (BatchN (None, 16, 16, 32)  128     conv2d_109[0][0]         
__________________________________________________________________________________________________
add_36 (Add)          (None, 16, 16, 32)  0      batch_normalization_106[0][0]  
                                 batch_normalization_105[0][0]  
__________________________________________________________________________________________________
activation_93 (Activation)   (None, 16, 16, 32)  0      add_36[0][0]           
__________________________________________________________________________________________________
conv2d_111 (Conv2D)       (None, 16, 16, 32)  9248    activation_93[0][0]       
__________________________________________________________________________________________________
batch_normalization_107 (BatchN (None, 16, 16, 32)  128     conv2d_111[0][0]         
__________________________________________________________________________________________________
activation_94 (Activation)   (None, 16, 16, 32)  0      batch_normalization_107[0][0]  
__________________________________________________________________________________________________
conv2d_112 (Conv2D)       (None, 16, 16, 32)  9248    activation_94[0][0]       
__________________________________________________________________________________________________
batch_normalization_108 (BatchN (None, 16, 16, 32)  128     conv2d_112[0][0]         
__________________________________________________________________________________________________
add_37 (Add)          (None, 16, 16, 32)  0      activation_93[0][0]       
                                 batch_normalization_108[0][0]  
__________________________________________________________________________________________________
activation_95 (Activation)   (None, 16, 16, 32)  0      add_37[0][0]           
__________________________________________________________________________________________________
conv2d_113 (Conv2D)       (None, 8, 8, 64)   18496    activation_95[0][0]       
__________________________________________________________________________________________________
batch_normalization_109 (BatchN (None, 8, 8, 64)   256     conv2d_113[0][0]         
__________________________________________________________________________________________________
activation_96 (Activation)   (None, 8, 8, 64)   0      batch_normalization_109[0][0]  
__________________________________________________________________________________________________
conv2d_115 (Conv2D)       (None, 8, 8, 64)   18496    activation_95[0][0]       
__________________________________________________________________________________________________
conv2d_114 (Conv2D)       (None, 8, 8, 64)   36928    activation_96[0][0]       
__________________________________________________________________________________________________
batch_normalization_111 (BatchN (None, 8, 8, 64)   256     conv2d_115[0][0]         
__________________________________________________________________________________________________
batch_normalization_110 (BatchN (None, 8, 8, 64)   256     conv2d_114[0][0]         
__________________________________________________________________________________________________
add_38 (Add)          (None, 8, 8, 64)   0      batch_normalization_111[0][0]  
                                 batch_normalization_110[0][0]  
__________________________________________________________________________________________________
activation_97 (Activation)   (None, 8, 8, 64)   0      add_38[0][0]           
__________________________________________________________________________________________________
conv2d_116 (Conv2D)       (None, 8, 8, 64)   36928    activation_97[0][0]       
__________________________________________________________________________________________________
batch_normalization_112 (BatchN (None, 8, 8, 64)   256     conv2d_116[0][0]         
__________________________________________________________________________________________________
activation_98 (Activation)   (None, 8, 8, 64)   0      batch_normalization_112[0][0]  
__________________________________________________________________________________________________
conv2d_117 (Conv2D)       (None, 8, 8, 64)   36928    activation_98[0][0]       
__________________________________________________________________________________________________
batch_normalization_113 (BatchN (None, 8, 8, 64)   256     conv2d_117[0][0]         
__________________________________________________________________________________________________
add_39 (Add)          (None, 8, 8, 64)   0      activation_97[0][0]       
                                 batch_normalization_113[0][0]  
__________________________________________________________________________________________________
activation_99 (Activation)   (None, 8, 8, 64)   0      add_39[0][0]           
__________________________________________________________________________________________________
average_pooling2d_2 (AveragePoo (None, 1, 1, 64)   0      activation_99[0][0]       
__________________________________________________________________________________________________
flatten_2 (Flatten)       (None, 64)      0      average_pooling2d_2[0][0]    
__________________________________________________________________________________________________
dense_2 (Dense)         (None, 10)      650     flatten_2[0][0]         
==================================================================================================
Total params: 197,418
Trainable params: 196,298
Non-trainable params: 1,120
__________________________________________________________________________________________________

以上这篇keras的三种模型实现与区别说明就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
树莓派中python获取GY-85九轴模块信息示例
Dec 05 Python
简单实现python爬虫功能
Dec 31 Python
Python编程中的文件读写及相关的文件对象方法讲解
Jan 19 Python
浅析Python中MySQLdb的事务处理功能
Sep 21 Python
基于Django URL传参 FORM表单传数据 get post的用法实例
May 28 Python
Python3.5 Pandas模块之Series用法实例分析
Apr 23 Python
利用Python模拟登录pastebin.com的实现方法
Jul 12 Python
Python实现图片添加文字
Nov 26 Python
解决Pycharm中恢复被exclude的项目问题(pycharm source root)
Feb 14 Python
python转化excel数字日期为标准日期操作
Jul 14 Python
python -v 报错问题的解决方法
Sep 15 Python
Opencv中cv2.floodFill算法的使用
Jun 18 Python
Keras中 ImageDataGenerator函数的参数用法
Jul 03 #Python
python程序如何进行保存
Jul 03 #Python
keras的ImageDataGenerator和flow()的用法说明
Jul 03 #Python
python如何安装下载后的模块
Jul 03 #Python
python中id函数运行方式
Jul 03 #Python
Keras 数据增强ImageDataGenerator多输入多输出实例
Jul 03 #Python
keras和tensorflow使用fit_generator 批次训练操作
Jul 03 #Python
You might like
MySql 按时间段查询数据方法(实例说明)
2008/11/02 PHP
php strtotime 函数UNIX时间戳
2009/01/14 PHP
PHP开发过程中常用函数收藏
2009/12/14 PHP
WordPress过滤垃圾评论的几种主要方法小结
2016/07/11 PHP
thinkPHP+ajax实现统计页面pv浏览量的方法
2017/03/15 PHP
详谈PHP中public,private,protected,abstract等关键字的用法
2017/12/31 PHP
Prototype 学习 Prototype对象
2009/07/12 Javascript
jQuery温习篇 强大的JQuery选择器
2010/04/24 Javascript
基于jquery的下拉框改变动态添加和删除表格实现代码
2020/09/12 Javascript
JQuery实现表格中相同单元格合并示例代码
2013/06/26 Javascript
jquery获得option的值和对option进行操作
2013/12/13 Javascript
JavaScript实现防止网页被嵌入Frame框架的代码分享
2014/12/29 Javascript
chrome浏览器当表单自动填充时如何去除浏览器自动添加的默认样式
2015/10/09 Javascript
基于JavaScript代码实现微信扫一扫下载APP
2015/12/30 Javascript
js 连续赋值的简单实现
2016/06/13 Javascript
jQuery Validate 相关参数及常用的自定义验证规则
2017/03/06 Javascript
使用requirejs模块化开发多页面一个入口js的使用方式
2017/06/14 Javascript
angular-tree-component的使用详解
2018/07/30 Javascript
javascript事件循环event loop的简单模型解释与应用分析
2020/03/14 Javascript
python使用新浪微博api上传图片到微博示例
2014/01/10 Python
Python中使用copy模块实现列表(list)拷贝
2015/04/14 Python
Python模拟脉冲星伪信号频率实例代码
2018/01/03 Python
对pandas中iloc,loc取数据差别及按条件取值的方法详解
2018/11/06 Python
Python函数装饰器常见使用方法实例详解
2019/03/30 Python
python使用turtle库绘制奥运五环
2020/02/24 Python
快速解决pymongo操作mongodb的时区问题
2020/12/05 Python
AmazeUI图片轮播效果的示例代码
2020/08/20 HTML / CSS
美国新蛋IT数码商城:Newegg.com
2016/07/21 全球购物
大学国际贸易专业自荐信
2014/06/05 职场文书
2014年高校辅导员工作总结
2014/12/09 职场文书
2015年考研复习计划
2015/01/19 职场文书
中学教师个人总结
2015/02/10 职场文书
校园安全学习心得体会
2016/01/18 职场文书
2019年朋友圈经典励志语录50条
2019/07/05 职场文书
探究Mysql模糊查询是否区分大小写
2021/06/11 MySQL
mysql分组后合并显示一个字段的多条数据方式
2022/01/22 MySQL