keras的三种模型实现与区别说明


Posted in Python onJuly 03, 2020

前言

一、keras提供了三种定义模型的方式

1. 序列式(Sequential) API

序贯(sequential)API允许你为大多数问题逐层堆叠创建模型。虽然说对很多的应用来说,这样的一个手法很简单也解决了很多深度学习网络结构的构建,但是它也有限制-它不允许你创建模型有共享层或有多个输入或输出的网络。

2. 函数式(Functional) API

Keras函数式(functional)API为构建网络模型提供了更为灵活的方式。

它允许你定义多个输入或输出模型以及共享图层的模型。除此之外,它允许你定义动态(ad-hoc)的非周期性(acyclic)网络图。

模型是通过创建层的实例(layer instances)并将它们直接相互连接成对来定义的,然后定义一个模型(model)来指定那些层是要作为这个模型的输入和输出。

3.子类(Subclassing) API

补充知识:keras pytorch 构建模型对比

使用CIFAR10数据集,用三种框架构建Residual_Network作为例子,比较框架间的异同。

数据集格式

pytorch的数据集格式

import torch
import torch.nn as nn
import torchvision

# Download and construct CIFAR-10 dataset.
train_dataset = torchvision.datasets.CIFAR10(root='../../data/',
                       train=True, 
                       download=True)

# Fetch one data pair (read data from disk).
image, label = train_dataset[0]
print (image.size()) # torch.Size([3, 32, 32])
print (label) # 6
print (train_dataset.data.shape) # (50000, 32, 32, 3)
# type(train_dataset.targets)==list
print (len(train_dataset.targets)) # 50000

# Data loader (this provides queues and threads in a very simple way).
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
                      batch_size=64, 
                      shuffle=True)
"""
# 演示DataLoader返回的数据结构
# When iteration starts, queue and thread start to load data from files.
data_iter = iter(train_loader)

# Mini-batch images and labels.
images, labels = data_iter.next()
print(images.shape) # torch.Size([100, 3, 32, 32])
print(labels.shape) 
# torch.Size([100]) 可见经过DataLoader后,labels由list变成了pytorch内置的tensor格式
"""
# 一般使用的话是下面这种
# Actual usage of the data loader is as below.
for images, labels in train_loader:
  # Training code should be written here.
  pass

keras的数据格式

import keras
from keras.datasets import cifar10

(train_x, train_y) , (test_x, test_y) = cifar10.load_data()
print(train_x.shape) # ndarray 类型: (50000, 32, 32, 3)
print(train_y.shape) # (50000, 1)

输入网络的数据格式不同

"""
1: pytorch 都是内置torch.xxTensor输入网络,而keras的则是原生ndarray类型
2: 对于multi-class的其中一种loss,即cross-entropy loss 而言,
  pytorch的api为 CorssEntropyLoss, 但y_true不能用one-hoe编码!这与keras,tensorflow	    都不同。tensorflow相应的api为softmax_cross_entropy
  他们的api都仅限于multi-class classification
3*: 其实上面提到的api都属于categorical cross-entropy loss,
  又叫 softmax loss,是函数内部先进行了 softmax 激活,再经过cross-entropy loss。
  这个loss是cross-entropy loss的变种,
  cross-entropy loss又叫logistic loss 或 multinomial logistic loss。
  实现这种loss的函数不包括激活函数,需要自定义。
  pytorch对应的api为BCEloss(仅限于 binary classification),
  tensorflow 对应的api为 log_loss。
  cross-entropy loss的第二个变种是 binary cross-entropy loss 又叫 sigmoid cross-  entropy loss。
  函数内部先进行了sigmoid激活,再经过cross-entropy loss。
  pytorch对应的api为BCEWithLogitsLoss,
  tensorflow对应的api为sigmoid_cross_entropy
"""

# pytorch
criterion = nn.CrossEntropyLoss()
...
for epoch in range(num_epochs):
  for i, (images, labels) in enumerate(train_loader):
    images = images.to(device)
    labels = labels.to(device)
    
    # Forward pass
    outputs = model(images)
    # 对于multi-class cross-entropy loss
    # 输入y_true不需要one-hot编码
    loss = criterion(outputs, labels)
...

# keras
# 对于multi-class cross-entropy loss
# 输入y_true需要one-hot编码
train_y = keras.utils.to_categorical(train_y,10)
...
model.fit_generator(datagen.flow(train_x, train_y, batch_size=128),
          validation_data=[test_x,test_y],
          epochs=epochs,steps_per_epoch=steps_per_epoch, verbose=1)
...

整体流程

keras 流程

model = myModel()
model.compile(optimizer=Adam(0.001),loss="categorical_crossentropy",metrics=["accuracy"])
model.fit_generator(datagen.flow(train_x, train_y, batch_size=128),
          validation_data=[test_x,test_y],
          epochs=epochs,steps_per_epoch=steps_per_epoch, verbose=1, workers=4)
#Evaluate the accuracy of the test dataset
accuracy = model.evaluate(x=test_x,y=test_y,batch_size=128)
# 保存整个网络
model.save("cifar10model.h5")
"""
# https://blog.csdn.net/jiandanjinxin/article/details/77152530
# 使用
# keras.models.load_model("cifar10model.h5")

# 只保存architecture
# json_string = model.to_json() 
# open('my_model_architecture.json','w').write(json_string)  
# 使用
# from keras.models import model_from_json
#model = model_from_json(open('my_model_architecture.json').read()) 

# 只保存weights
# model.save_weights('my_model_weights.h5') 
#需要在代码中初始化一个完全相同的模型 
# model.load_weights('my_model_weights.h5')
#需要加载权重到不同的网络结构(有些层一样)中,例如fine-tune或transfer-learning,可以通过层名字来加载模型 
# model.load_weights('my_model_weights.h5', by_name=True)
"""

pytorch 流程

model = myModel()
# Loss and optimizer
criterion = nn.CrossEntropyLoss()

for epoch in range(num_epochs):
  for i, (images, labels) in enumerate(train_loader):
    images = images.to(device)
    labels = labels.to(device)
    
    # Forward pass
    outputs = model(images)
    loss = criterion(outputs, labels)
    
    # Backward and optimize
		# 将上次迭代计算的梯度值清0
    optimizer.zero_grad()
    # 反向传播,计算梯度值
    loss.backward()
    # 更新权值参数
    optimizer.step()
    
# model.eval(),让model变成测试模式,对dropout和batch normalization的操作在训练和测试的时候是不一样的
# eval()时,pytorch会自动把BN和DropOut固定住,不会取平均,而是用训练好的值。
# 不然的话,一旦test的batch_size过小,很容易就会被BN层导致生成图片颜色失真极大。
model.eval()
with torch.no_grad():
  correct = 0
  total = 0
  for images, labels in test_loader:
    images = images.to(device)
    labels = labels.to(device)
    outputs = model(images)
    _, predicted = torch.max(outputs.data, 1)
    total += labels.size(0)
    correct += (predicted == labels).sum().item()

  print('Accuracy of the model on the test images: {} %'.format(100 * correct / total))

# Save the model checkpoint
# 这是只保存了weights
torch.save(model.state_dict(), 'resnet.ckpt')
"""
# 使用
# myModel.load_state_dict(torch.load('params.ckpt'))
# 若想保存整个网络(architecture + weights)
# torch.save(resnet, 'model.ckpt')
# 使用
#model = torch.load('model.ckpt')
"""

对比流程

#https://blog.csdn.net/dss_dssssd/article/details/83892824
"""
1: 准备数据(注意数据格式不同)
2: 定义网络结构model
3: 定义损失函数
4: 定义优化算法 optimizer
5: 训练-keras
	5.1:编译模型(传入loss function和optimizer等)
	5.2:训练模型(fit or fit_generator,传入数据)
5: 训练-pytorch
迭代训练:
	5.1:准备好tensor形式的输入数据和标签(可选)
	5.2:前向传播计算网络输出output和计算损失函数loss
	5.3:反向传播更新参数
		以下三句话一句也不能少:
		5.3.1:将上次迭代计算的梯度值清0
			optimizer.zero_grad()
		5.3.2:反向传播,计算梯度值
			loss.backward()
		5.3.3:更新权值参数
			optimizer.step()
6: 在测试集上测试-keras
	model.evaluate
6: 在测试集上测试-pytorch
  遍历测试集,自定义metric
7: 保存网络(可选) 具体实现参考上面代码
"""

构建网络

对比网络

1、对于keras,不需要input_channels,函数内部会自动获得,而pytorch则需要显示声明input_channels

2、对于pytorch Conv2d需要指定padding,而keras的则是same和valid两种选项(valid即padding=0)

3、keras的Flatten操作可以视作pytorch中的view

4、keras的dimension一般顺序是(H, W, C) (tensorflow 为backend的话),而pytorch的顺序则是( C, H, W)

5、具体的变换可以参照下方,但由于没有学过pytorch,keras也刚入门,不能保证正确,日后学的更深入了之后再来看看。

pytorch 构建Residual-network

import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms


# Device configuration
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

# Hyper-parameters
num_epochs = 80
learning_rate = 0.001

# Image preprocessing modules
transform = transforms.Compose([
  transforms.Pad(4),
  transforms.RandomHorizontalFlip(),
  transforms.RandomCrop(32),
  transforms.ToTensor()])

# CIFAR-10 dataset
# train_dataset.data.shape
#Out[31]: (50000, 32, 32, 3)
# train_dataset.targets list
# len(list)=5000
train_dataset = torchvision.datasets.CIFAR10(root='./data/',
                       train=True, 
                       transform=transform,
                       download=True)

test_dataset = torchvision.datasets.CIFAR10(root='../../data/',
                      train=False, 
                      transform=transforms.ToTensor())

# Data loader
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
                      batch_size=100, 
                      shuffle=True)

test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
                     batch_size=100, 
                     shuffle=False)

# 3x3 convolution
def conv3x3(in_channels, out_channels, stride=1):
  return nn.Conv2d(in_channels, out_channels, kernel_size=3, 
           stride=stride, padding=1, bias=False)

# Residual block
class ResidualBlock(nn.Module):
  def __init__(self, in_channels, out_channels, stride=1, downsample=None):
    super(ResidualBlock, self).__init__()
    self.conv1 = conv3x3(in_channels, out_channels, stride)
    self.bn1 = nn.BatchNorm2d(out_channels)
    self.relu = nn.ReLU(inplace=True)
    self.conv2 = conv3x3(out_channels, out_channels)
    self.bn2 = nn.BatchNorm2d(out_channels)
    self.downsample = downsample
    
  def forward(self, x):
    residual = x
    out = self.conv1(x)
    out = self.bn1(out)
    out = self.relu(out)
    out = self.conv2(out)
    out = self.bn2(out)
    if self.downsample:
      residual = self.downsample(x)
    out += residual
    out = self.relu(out)
    return out

# ResNet
class ResNet(nn.Module):
  def __init__(self, block, layers, num_classes=10):
    super(ResNet, self).__init__()
    self.in_channels = 16
    self.conv = conv3x3(3, 16)
    self.bn = nn.BatchNorm2d(16)
    self.relu = nn.ReLU(inplace=True)
    self.layer1 = self.make_layer(block, 16, layers[0])
    self.layer2 = self.make_layer(block, 32, layers[1], 2)
    self.layer3 = self.make_layer(block, 64, layers[2], 2)
    self.avg_pool = nn.AvgPool2d(8)
    self.fc = nn.Linear(64, num_classes)
    
  def make_layer(self, block, out_channels, blocks, stride=1):
    downsample = None
    if (stride != 1) or (self.in_channels != out_channels):
      downsample = nn.Sequential(
        conv3x3(self.in_channels, out_channels, stride=stride),
        nn.BatchNorm2d(out_channels))
    layers = []
    layers.append(block(self.in_channels, out_channels, stride, downsample))
    self.in_channels = out_channels
    for i in range(1, blocks):
      layers.append(block(out_channels, out_channels))
    # [*[1,2,3]]
    # Out[96]: [1, 2, 3]
    return nn.Sequential(*layers)
  
  def forward(self, x):
    out = self.conv(x) # out.shape:torch.Size([100, 16, 32, 32])
    out = self.bn(out)
    out = self.relu(out)
    out = self.layer1(out)
    out = self.layer2(out)
    out = self.layer3(out)
    out = self.avg_pool(out)
    out = out.view(out.size(0), -1)
    out = self.fc(out)
    return out
  
model = ResNet(ResidualBlock, [2, 2, 2]).to(device)

# pip install torchsummary or
# git clone https://github.com/sksq96/pytorch-summary
from torchsummary import summary
# input_size=(C,H,W)
summary(model, input_size=(3, 32, 32))

images,labels = iter(train_loader).next()
outputs = model(images)

# Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)

# For updating learning rate
def update_lr(optimizer, lr):  
  for param_group in optimizer.param_groups:
    param_group['lr'] = lr

# Train the model
total_step = len(train_loader)
curr_lr = learning_rate
for epoch in range(num_epochs):
  for i, (images, labels) in enumerate(train_loader):
    images = images.to(device)
    labels = labels.to(device)
    
    # Forward pass
    outputs = model(images)
    loss = criterion(outputs, labels)
    
    # Backward and optimize
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
    
    if (i+1) % 100 == 0:
      print ("Epoch [{}/{}], Step [{}/{}] Loss: {:.4f}"
          .format(epoch+1, num_epochs, i+1, total_step, loss.item()))

  # Decay learning rate
  if (epoch+1) % 20 == 0:
    curr_lr /= 3
    update_lr(optimizer, curr_lr)

# Test the model
model.eval()
with torch.no_grad():
  correct = 0
  total = 0
  for images, labels in test_loader:
    images = images.to(device)
    labels = labels.to(device)
    outputs = model(images)
    _, predicted = torch.max(outputs.data, 1)
    total += labels.size(0)
    correct += (predicted == labels).sum().item()

  print('Accuracy of the model on the test images: {} %'.format(100 * correct / total))

# Save the model checkpoint
torch.save(model.state_dict(), 'resnet.ckpt')

keras 对应的网络构建部分

"""
#pytorch
def conv3x3(in_channels, out_channels, stride=1):
  return nn.Conv2d(in_channels, out_channels, kernel_size=3, 
           stride=stride, padding=1, bias=False)
"""

def conv3x3(x,out_channels, stride=1):
  #out = spatial_2d_padding(x,padding=((1, 1), (1, 1)), data_format="channels_last")
  return Conv2D(filters=out_channels, kernel_size=[3,3], strides=(stride,stride),padding="same")(x)

"""
# pytorch
# Residual block
class ResidualBlock(nn.Module):
  def __init__(self, in_channels, out_channels, stride=1, downsample=None):
    super(ResidualBlock, self).__init__()
    self.conv1 = conv3x3(in_channels, out_channels, stride)
    self.bn1 = nn.BatchNorm2d(out_channels)
    self.relu = nn.ReLU(inplace=True)
    self.conv2 = conv3x3(out_channels, out_channels)
    self.bn2 = nn.BatchNorm2d(out_channels)
    self.downsample = downsample
    
  def forward(self, x):
    residual = x
    out = self.conv1(x)
    out = self.bn1(out)
    out = self.relu(out)
    out = self.conv2(out)
    out = self.bn2(out)
    if self.downsample:
      residual = self.downsample(x)
    out += residual
    out = self.relu(out)
    return out
"""
def ResidualBlock(x, out_channels, stride=1, downsample=False):
  residual = x
  out = conv3x3(x, out_channels,stride)
  out = BatchNormalization()(out)
  out = Activation("relu")(out)
  out = conv3x3(out, out_channels)
  out = BatchNormalization()(out)
  if downsample:
    residual = conv3x3(residual, out_channels, stride=stride)
    residual = BatchNormalization()(residual)
  out = keras.layers.add([residual,out])
  out = Activation("relu")(out)
  return out
"""
#pytorch
def make_layer(self, block, out_channels, blocks, stride=1):
    downsample = None
    if (stride != 1) or (self.in_channels != out_channels):
      downsample = nn.Sequential(
        conv3x3(self.in_channels, out_channels, stride=stride),
        nn.BatchNorm2d(out_channels))
    layers = []
    layers.append(block(self.in_channels, out_channels, stride, downsample))
    self.in_channels = out_channels
    for i in range(1, blocks):
      layers.append(block(out_channels, out_channels))
    # [*[1,2,3]]
    # Out[96]: [1, 2, 3]
    return nn.Sequential(*layers)
"""
def make_layer(x, out_channels, blocks, stride=1):
    # tf backend: x.output_shape[-1]==out_channels
    #print("x.shape[-1] ",x.shape[-1])
    downsample = False
    if (stride != 1) or (out_channels != x.shape[-1]):
      downsample = True
    out = ResidualBlock(x, out_channels, stride, downsample)
    for i in range(1, blocks):
      out = ResidualBlock(out, out_channels)
    return out

def KerasResidual(input_shape):
  images = Input(input_shape)
  out = conv3x3(images,16) # out.shape=(None, 32, 32, 16) 
  out = BatchNormalization()(out)
  out = Activation("relu")(out)
  layer1_out = make_layer(out, 16, layers[0])
  layer2_out = make_layer(layer1_out, 32, layers[1], 2)
  layer3_out = make_layer(layer2_out, 64, layers[2], 2)
  out = AveragePooling2D(pool_size=(8,8))(layer3_out)
  out = Flatten()(out)
  # pytorch 的nn.CrossEntropyLoss()会首先执行softmax计算
  # 当换成keras时,没有tf类似的softmax_cross_entropy
  # 自带的categorical_crossentropy不会执行激活操作,因此得在Dense层加上activation
  out = Dense(units=10, activation="softmax")(out)
  model = Model(inputs=images,outputs=out)
  return model

input_shape=(32, 32, 3)
layers=[2, 2, 2]
mymodel = KerasResidual(input_shape)
mymodel.summary()

pytorch model summary

----------------------------------------------------------------
    Layer (type)        Output Shape     Param #
================================================================
      Conv2d-1      [-1, 16, 32, 32]       432
    BatchNorm2d-2      [-1, 16, 32, 32]       32
       ReLU-3      [-1, 16, 32, 32]        0
      Conv2d-4      [-1, 16, 32, 32]      2,304
    BatchNorm2d-5      [-1, 16, 32, 32]       32
       ReLU-6      [-1, 16, 32, 32]        0
      Conv2d-7      [-1, 16, 32, 32]      2,304
    BatchNorm2d-8      [-1, 16, 32, 32]       32
       ReLU-9      [-1, 16, 32, 32]        0
  ResidualBlock-10      [-1, 16, 32, 32]        0
      Conv2d-11      [-1, 16, 32, 32]      2,304
   BatchNorm2d-12      [-1, 16, 32, 32]       32
       ReLU-13      [-1, 16, 32, 32]        0
      Conv2d-14      [-1, 16, 32, 32]      2,304
   BatchNorm2d-15      [-1, 16, 32, 32]       32
       ReLU-16      [-1, 16, 32, 32]        0
  ResidualBlock-17      [-1, 16, 32, 32]        0
      Conv2d-18      [-1, 32, 16, 16]      4,608
   BatchNorm2d-19      [-1, 32, 16, 16]       64
       ReLU-20      [-1, 32, 16, 16]        0
      Conv2d-21      [-1, 32, 16, 16]      9,216
   BatchNorm2d-22      [-1, 32, 16, 16]       64
      Conv2d-23      [-1, 32, 16, 16]      4,608
   BatchNorm2d-24      [-1, 32, 16, 16]       64
       ReLU-25      [-1, 32, 16, 16]        0
  ResidualBlock-26      [-1, 32, 16, 16]        0
      Conv2d-27      [-1, 32, 16, 16]      9,216
   BatchNorm2d-28      [-1, 32, 16, 16]       64
       ReLU-29      [-1, 32, 16, 16]        0
      Conv2d-30      [-1, 32, 16, 16]      9,216
   BatchNorm2d-31      [-1, 32, 16, 16]       64
       ReLU-32      [-1, 32, 16, 16]        0
  ResidualBlock-33      [-1, 32, 16, 16]        0
      Conv2d-34       [-1, 64, 8, 8]     18,432
   BatchNorm2d-35       [-1, 64, 8, 8]       128
       ReLU-36       [-1, 64, 8, 8]        0
      Conv2d-37       [-1, 64, 8, 8]     36,864
   BatchNorm2d-38       [-1, 64, 8, 8]       128
      Conv2d-39       [-1, 64, 8, 8]     18,432
   BatchNorm2d-40       [-1, 64, 8, 8]       128
       ReLU-41       [-1, 64, 8, 8]        0
  ResidualBlock-42       [-1, 64, 8, 8]        0
      Conv2d-43       [-1, 64, 8, 8]     36,864
   BatchNorm2d-44       [-1, 64, 8, 8]       128
       ReLU-45       [-1, 64, 8, 8]        0
      Conv2d-46       [-1, 64, 8, 8]     36,864
   BatchNorm2d-47       [-1, 64, 8, 8]       128
       ReLU-48       [-1, 64, 8, 8]        0
  ResidualBlock-49       [-1, 64, 8, 8]        0
    AvgPool2d-50       [-1, 64, 1, 1]        0
      Linear-51          [-1, 10]       650
================================================================
Total params: 195,738
Trainable params: 195,738
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.01
Forward/backward pass size (MB): 3.63
Params size (MB): 0.75
Estimated Total Size (MB): 4.38
----------------------------------------------------------------

keras model summary

__________________________________________________________________________________________________
Layer (type)          Output Shape     Param #   Connected to           
==================================================================================================
input_26 (InputLayer)      (None, 32, 32, 3)  0                      
__________________________________________________________________________________________________
conv2d_103 (Conv2D)       (None, 32, 32, 16)  448     input_26[0][0]          
__________________________________________________________________________________________________
batch_normalization_99 (BatchNo (None, 32, 32, 16)  64     conv2d_103[0][0]         
__________________________________________________________________________________________________
activation_87 (Activation)   (None, 32, 32, 16)  0      batch_normalization_99[0][0]   
__________________________________________________________________________________________________
conv2d_104 (Conv2D)       (None, 32, 32, 16)  2320    activation_87[0][0]       
__________________________________________________________________________________________________
batch_normalization_100 (BatchN (None, 32, 32, 16)  64     conv2d_104[0][0]         
__________________________________________________________________________________________________
activation_88 (Activation)   (None, 32, 32, 16)  0      batch_normalization_100[0][0]  
__________________________________________________________________________________________________
conv2d_105 (Conv2D)       (None, 32, 32, 16)  2320    activation_88[0][0]       
__________________________________________________________________________________________________
batch_normalization_101 (BatchN (None, 32, 32, 16)  64     conv2d_105[0][0]         
__________________________________________________________________________________________________
add_34 (Add)          (None, 32, 32, 16)  0      activation_87[0][0]       
                                 batch_normalization_101[0][0]  
__________________________________________________________________________________________________
activation_89 (Activation)   (None, 32, 32, 16)  0      add_34[0][0]           
__________________________________________________________________________________________________
conv2d_106 (Conv2D)       (None, 32, 32, 16)  2320    activation_89[0][0]       
__________________________________________________________________________________________________
batch_normalization_102 (BatchN (None, 32, 32, 16)  64     conv2d_106[0][0]         
__________________________________________________________________________________________________
activation_90 (Activation)   (None, 32, 32, 16)  0      batch_normalization_102[0][0]  
__________________________________________________________________________________________________
conv2d_107 (Conv2D)       (None, 32, 32, 16)  2320    activation_90[0][0]       
__________________________________________________________________________________________________
batch_normalization_103 (BatchN (None, 32, 32, 16)  64     conv2d_107[0][0]         
__________________________________________________________________________________________________
add_35 (Add)          (None, 32, 32, 16)  0      activation_89[0][0]       
                                 batch_normalization_103[0][0]  
__________________________________________________________________________________________________
activation_91 (Activation)   (None, 32, 32, 16)  0      add_35[0][0]           
__________________________________________________________________________________________________
conv2d_108 (Conv2D)       (None, 16, 16, 32)  4640    activation_91[0][0]       
__________________________________________________________________________________________________
batch_normalization_104 (BatchN (None, 16, 16, 32)  128     conv2d_108[0][0]         
__________________________________________________________________________________________________
activation_92 (Activation)   (None, 16, 16, 32)  0      batch_normalization_104[0][0]  
__________________________________________________________________________________________________
conv2d_110 (Conv2D)       (None, 16, 16, 32)  4640    activation_91[0][0]       
__________________________________________________________________________________________________
conv2d_109 (Conv2D)       (None, 16, 16, 32)  9248    activation_92[0][0]       
__________________________________________________________________________________________________
batch_normalization_106 (BatchN (None, 16, 16, 32)  128     conv2d_110[0][0]         
__________________________________________________________________________________________________
batch_normalization_105 (BatchN (None, 16, 16, 32)  128     conv2d_109[0][0]         
__________________________________________________________________________________________________
add_36 (Add)          (None, 16, 16, 32)  0      batch_normalization_106[0][0]  
                                 batch_normalization_105[0][0]  
__________________________________________________________________________________________________
activation_93 (Activation)   (None, 16, 16, 32)  0      add_36[0][0]           
__________________________________________________________________________________________________
conv2d_111 (Conv2D)       (None, 16, 16, 32)  9248    activation_93[0][0]       
__________________________________________________________________________________________________
batch_normalization_107 (BatchN (None, 16, 16, 32)  128     conv2d_111[0][0]         
__________________________________________________________________________________________________
activation_94 (Activation)   (None, 16, 16, 32)  0      batch_normalization_107[0][0]  
__________________________________________________________________________________________________
conv2d_112 (Conv2D)       (None, 16, 16, 32)  9248    activation_94[0][0]       
__________________________________________________________________________________________________
batch_normalization_108 (BatchN (None, 16, 16, 32)  128     conv2d_112[0][0]         
__________________________________________________________________________________________________
add_37 (Add)          (None, 16, 16, 32)  0      activation_93[0][0]       
                                 batch_normalization_108[0][0]  
__________________________________________________________________________________________________
activation_95 (Activation)   (None, 16, 16, 32)  0      add_37[0][0]           
__________________________________________________________________________________________________
conv2d_113 (Conv2D)       (None, 8, 8, 64)   18496    activation_95[0][0]       
__________________________________________________________________________________________________
batch_normalization_109 (BatchN (None, 8, 8, 64)   256     conv2d_113[0][0]         
__________________________________________________________________________________________________
activation_96 (Activation)   (None, 8, 8, 64)   0      batch_normalization_109[0][0]  
__________________________________________________________________________________________________
conv2d_115 (Conv2D)       (None, 8, 8, 64)   18496    activation_95[0][0]       
__________________________________________________________________________________________________
conv2d_114 (Conv2D)       (None, 8, 8, 64)   36928    activation_96[0][0]       
__________________________________________________________________________________________________
batch_normalization_111 (BatchN (None, 8, 8, 64)   256     conv2d_115[0][0]         
__________________________________________________________________________________________________
batch_normalization_110 (BatchN (None, 8, 8, 64)   256     conv2d_114[0][0]         
__________________________________________________________________________________________________
add_38 (Add)          (None, 8, 8, 64)   0      batch_normalization_111[0][0]  
                                 batch_normalization_110[0][0]  
__________________________________________________________________________________________________
activation_97 (Activation)   (None, 8, 8, 64)   0      add_38[0][0]           
__________________________________________________________________________________________________
conv2d_116 (Conv2D)       (None, 8, 8, 64)   36928    activation_97[0][0]       
__________________________________________________________________________________________________
batch_normalization_112 (BatchN (None, 8, 8, 64)   256     conv2d_116[0][0]         
__________________________________________________________________________________________________
activation_98 (Activation)   (None, 8, 8, 64)   0      batch_normalization_112[0][0]  
__________________________________________________________________________________________________
conv2d_117 (Conv2D)       (None, 8, 8, 64)   36928    activation_98[0][0]       
__________________________________________________________________________________________________
batch_normalization_113 (BatchN (None, 8, 8, 64)   256     conv2d_117[0][0]         
__________________________________________________________________________________________________
add_39 (Add)          (None, 8, 8, 64)   0      activation_97[0][0]       
                                 batch_normalization_113[0][0]  
__________________________________________________________________________________________________
activation_99 (Activation)   (None, 8, 8, 64)   0      add_39[0][0]           
__________________________________________________________________________________________________
average_pooling2d_2 (AveragePoo (None, 1, 1, 64)   0      activation_99[0][0]       
__________________________________________________________________________________________________
flatten_2 (Flatten)       (None, 64)      0      average_pooling2d_2[0][0]    
__________________________________________________________________________________________________
dense_2 (Dense)         (None, 10)      650     flatten_2[0][0]         
==================================================================================================
Total params: 197,418
Trainable params: 196,298
Non-trainable params: 1,120
__________________________________________________________________________________________________

以上这篇keras的三种模型实现与区别说明就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python yield 使用方法浅析
May 20 Python
Python3操作SQL Server数据库(实例讲解)
Oct 21 Python
python如何在循环引用中管理内存
Mar 20 Python
Python中类似于jquery的pyquery库用法分析
Dec 02 Python
基于Python3.6中的OpenCV实现图片色彩空间的转换
Feb 03 Python
python游戏开发的五个案例分享
Mar 09 Python
python except异常处理之后不退出,解决异常继续执行的实现
Apr 25 Python
python中random.randint和random.randrange的区别详解
Sep 20 Python
Python操作PostgreSql数据库的方法(基本的增删改查)
Dec 29 Python
sklearn中的交叉验证的实现(Cross-Validation)
Feb 22 Python
Python机器学习之基础概述
May 19 Python
python垃圾回收机制原理分析
Apr 13 Python
Keras中 ImageDataGenerator函数的参数用法
Jul 03 #Python
python程序如何进行保存
Jul 03 #Python
keras的ImageDataGenerator和flow()的用法说明
Jul 03 #Python
python如何安装下载后的模块
Jul 03 #Python
python中id函数运行方式
Jul 03 #Python
Keras 数据增强ImageDataGenerator多输入多输出实例
Jul 03 #Python
keras和tensorflow使用fit_generator 批次训练操作
Jul 03 #Python
You might like
建立动态的WML站点(二)
2006/10/09 PHP
windows xp下安装pear
2006/12/02 PHP
php中一个完整表单处理实现代码
2011/11/10 PHP
Laravel 5 框架入门(四)完结篇
2015/04/09 PHP
smarty简单应用实例
2015/11/03 PHP
PHP对XML内容进行修改和删除实例代码
2016/10/26 PHP
PHP MYSQL简易交互式站点开发
2016/12/27 PHP
php实现微信发红包功能
2018/07/13 PHP
JS 强制设为首页的代码
2009/01/31 Javascript
js url传值中文乱码之解决之道
2009/11/20 Javascript
jQuery 表单验证扩展代码(二)
2010/10/20 Javascript
JavaScript中String.match()方法的使用详解
2015/06/06 Javascript
JavaScript使用FileSystemObject对象写入文本文件内容的方法
2015/08/05 Javascript
使用Bootstrap美化按钮实例代码(demo)
2017/02/03 Javascript
深入理解Vue 组件之间传值
2018/08/16 Javascript
bootstrap table实现合并单元格效果
2018/12/24 Javascript
改变layer confirm弹窗按钮的颜色方法
2019/09/12 Javascript
Vue 刷新当前路由的实现代码
2019/09/26 Javascript
vue element 关闭当前tab 跳转到上一路由操作
2020/07/22 Javascript
记录Django开发心得
2014/07/16 Python
浅谈Python实现Apriori算法介绍
2017/12/20 Python
python机器学习理论与实战(二)决策树
2018/01/19 Python
Python开发虚拟环境使用virtualenvwrapper的搭建步骤教程图解
2018/09/19 Python
对python:print打印时加u的含义详解
2018/12/15 Python
解决使用PyCharm时无法启动控制台的问题
2019/01/19 Python
Python父目录、子目录的相互调用方法
2019/02/16 Python
Python unittest框架操作实例解析
2020/04/13 Python
百联网上商城:i百联
2017/01/28 全球购物
意大利在线药房:shop-farmacia.it
2019/03/12 全球购物
英国网上电器商店:Electricshop
2020/03/15 全球购物
公司面试感谢信
2014/02/01 职场文书
推荐信格式要求
2014/05/09 职场文书
工会工作先进事迹
2014/08/18 职场文书
医院党员公开承诺书
2014/08/30 职场文书
小鞋子观后感
2015/06/05 职场文书
flex弹性布局详解
2022/03/20 HTML / CSS