ImageDataGenerator的参数自己看文档
from keras.preprocessing import image import numpy as np X_train=np.ones((3,123,123,1)) Y_train=np.array([[1],[2],[2]]) generator=image.ImageDataGenerator(featurewise_center=False, samplewise_center=False, featurewise_std_normalization=False, samplewise_std_normalization=False, zca_whitening=False, zca_epsilon=1e-6, rotation_range=180, width_shift_range=0.2, height_shift_range=0.2, shear_range=0, zoom_range=0.001, channel_shift_range=0, fill_mode='nearest', cval=0., horizontal_flip=True, vertical_flip=True, rescale=None, preprocessing_function=None, data_format='channels_last') a=generator.flow(X_train,Y_train,batch_size=20)#生成的是一个迭代器,可直接用于for循环 ''' batch_size如果小于X的第一维m,next生成的多维矩阵的第一维是为batch_size,输出是从输入中随机选取batch_size个数据 batch_size如果大于X的第一维m,next生成的多维矩阵的第一维是m,输出是m个数据,不过顺序随机 ,输出的X,Y是一一对对应的 如果要直接用于tf.placeholder(),要求生成的矩阵和要与tf.placeholder相匹配 ''' X,Y=next(a) print(Y) X,Y=next(a) print(Y) X,Y=next(a) print(Y) X,Y=next(a)
输出
[[2] [1] [2]] [[2] [2] [1]] [[2] [2] [1]] [[2] [2] [1]]
补充知识:tensorflow 与keras 混用之坑
在使用tensorflow与keras混用是model.save 是正常的但是在load_model的时候报错了在这里mark 一下
其中错误为:TypeError: tuple indices must be integers, not list
再一一番百度后无结果,上谷歌后找到了类似的问题。但是是一对鸟文不知道什么东西(翻译后发现是俄文)。后来谷歌翻译了一下找到了解决方法。故将原始问题文章贴上来警示一下
原训练代码
from tensorflow.python.keras.preprocessing.image import ImageDataGenerator from tensorflow.python.keras.models import Sequential from tensorflow.python.keras.layers import Conv2D, MaxPooling2D, BatchNormalization from tensorflow.python.keras.layers import Activation, Dropout, Flatten, Dense #Каталог с данными для обучения train_dir = 'train' # Каталог с данными для проверки val_dir = 'val' # Каталог с данными для тестирования test_dir = 'val' # Размеры изображения img_width, img_height = 800, 800 # Размерность тензора на основе изображения для входных данных в нейронную сеть # backend Tensorflow, channels_last input_shape = (img_width, img_height, 3) # Количество эпох epochs = 1 # Размер мини-выборки batch_size = 4 # Количество изображений для обучения nb_train_samples = 300 # Количество изображений для проверки nb_validation_samples = 25 # Количество изображений для тестирования nb_test_samples = 25 model = Sequential() model.add(Conv2D(32, (7, 7), padding="same", input_shape=input_shape)) model.add(BatchNormalization()) model.add(Activation('tanh')) model.add(MaxPooling2D(pool_size=(10, 10))) model.add(Conv2D(64, (5, 5), padding="same")) model.add(BatchNormalization()) model.add(Activation('tanh')) model.add(MaxPooling2D(pool_size=(10, 10))) model.add(Flatten()) model.add(Dense(512)) model.add(Activation('relu')) model.add(Dropout(0.5)) model.add(Dense(10, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer="Nadam", metrics=['accuracy']) print(model.summary()) datagen = ImageDataGenerator(rescale=1. / 255) train_generator = datagen.flow_from_directory( train_dir, target_size=(img_width, img_height), batch_size=batch_size, class_mode='categorical') val_generator = datagen.flow_from_directory( val_dir, target_size=(img_width, img_height), batch_size=batch_size, class_mode='categorical') test_generator = datagen.flow_from_directory( test_dir, target_size=(img_width, img_height), batch_size=batch_size, class_mode='categorical') model.fit_generator( train_generator, steps_per_epoch=nb_train_samples // batch_size, epochs=epochs, validation_data=val_generator, validation_steps=nb_validation_samples // batch_size) print('Сохраняем сеть') model.save("grib.h5") print("Сохранение завершено!")
模型载入
from tensorflow.python.keras.preprocessing.image import ImageDataGenerator from tensorflow.python.keras.models import Sequential from tensorflow.python.keras.layers import Conv2D, MaxPooling2D, BatchNormalization from tensorflow.python.keras.layers import Activation, Dropout, Flatten, Dense from keras.models import load_model print("Загрузка сети") model = load_model("grib.h5") print("Загрузка завершена!")
报错
/usr/bin/python3.5 /home/disk2/py/neroset/do.py /home/mama/.local/lib/python3.5/site-packages/h5py/__init__.py:36: FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`. from ._conv import register_converters as _register_converters Using TensorFlow backend. Загрузка сети Traceback (most recent call last): File "/home/disk2/py/neroset/do.py", line 13, in <module> model = load_model("grib.h5") File "/usr/local/lib/python3.5/dist-packages/keras/models.py", line 243, in load_model model = model_from_config(model_config, custom_objects=custom_objects) File "/usr/local/lib/python3.5/dist-packages/keras/models.py", line 317, in model_from_config return layer_module.deserialize(config, custom_objects=custom_objects) File "/usr/local/lib/python3.5/dist-packages/keras/layers/__init__.py", line 55, in deserialize printable_module_name='layer') File "/usr/local/lib/python3.5/dist-packages/keras/utils/generic_utils.py", line 144, in deserialize_keras_object list(custom_objects.items()))) File "/usr/local/lib/python3.5/dist-packages/keras/models.py", line 1350, in from_config model.add(layer) File "/usr/local/lib/python3.5/dist-packages/keras/models.py", line 492, in add output_tensor = layer(self.outputs[0]) File "/usr/local/lib/python3.5/dist-packages/keras/engine/topology.py", line 590, in __call__ self.build(input_shapes[0]) File "/usr/local/lib/python3.5/dist-packages/keras/layers/normalization.py", line 92, in build dim = input_shape[self.axis] TypeError: tuple indices must be integers or slices, not list Process finished with exit code 1
战斗种族解释
убераю BatchNormalization всё работает хорошо. Не подскажите в чём ошибка?Выяснил что сохранение keras и нормализация tensorflow не работают вместе нужно просто изменить строку импорта.(译文:整理BatchNormalization一切正常。 不要告诉我错误是什么?我发现保存keras和规范化tensorflow不能一起工作;只需更改导入字符串即可。)
强调文本 强调文本
keras.preprocessing.image import ImageDataGenerator keras.models import Sequential keras.layers import Conv2D, MaxPooling2D, BatchNormalization keras.layers import Activation, Dropout, Flatten, Dense
##完美解决
##附上原文链接
https://qa-help.ru/questions/keras-batchnormalization
以上这篇keras的ImageDataGenerator和flow()的用法说明就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。
keras的ImageDataGenerator和flow()的用法说明
- Author -
o0程卓0o声明:登载此文出于传递更多信息之目的,并不意味着赞同其观点或证实其描述。
Reply on: @reply_date@
@reply_contents@