sklearn中的交叉验证的实现(Cross-Validation)


Posted in Python onFebruary 22, 2021

sklearn是利用python进行机器学习中一个非常全面和好用的第三方库,用过的都说好。今天主要记录一下sklearn中关于交叉验证的各种用法,主要是对sklearn官方文档 Cross-validation: evaluating estimator performance进行讲解,英文水平好的建议读官方文档,里面的知识点很详细。

先导入需要的库及数据集

In [1]: import numpy as np

In [2]: from sklearn.model_selection import train_test_split

In [3]: from sklearn.datasets import load_iris

In [4]: from sklearn import svm

In [5]: iris = load_iris()

In [6]: iris.data.shape, iris.target.shape
Out[6]: ((150, 4), (150,))

1.train_test_split

对数据集进行快速打乱(分为训练集和测试集)

这里相当于对数据集进行了shuffle后按照给定的test_size 进行数据集划分。

In [7]: X_train, X_test, y_train, y_test = train_test_split(
  ...:     iris.data, iris.target, test_size=.4, random_state=0)
  #这里是按照6:4对训练集测试集进行划分

In [8]: X_train.shape, y_train.shape
Out[8]: ((90, 4), (90,))

In [9]: X_test.shape, y_test.shape
Out[9]: ((60, 4), (60,))

In [10]: iris.data[:5]
Out[10]: 
array([[ 5.1, 3.5, 1.4, 0.2],
    [ 4.9, 3. , 1.4, 0.2],
    [ 4.7, 3.2, 1.3, 0.2],
    [ 4.6, 3.1, 1.5, 0.2],
    [ 5. , 3.6, 1.4, 0.2]])

In [11]: X_train[:5]
Out[11]: 
array([[ 6. , 3.4, 4.5, 1.6],
    [ 4.8, 3.1, 1.6, 0.2],
    [ 5.8, 2.7, 5.1, 1.9],
    [ 5.6, 2.7, 4.2, 1.3],
    [ 5.6, 2.9, 3.6, 1.3]])

In [12]: clf = svm.SVC(kernel='linear', C=1).fit(X_train, y_train)

In [13]: clf.score(X_test, y_test)
Out[13]: 0.96666666666666667

2.cross_val_score

对数据集进行指定次数的交叉验证并为每次验证效果评测

其中,score 默认是以 scoring='f1_macro'进行评测的,余外针对分类或回归还有:

sklearn中的交叉验证的实现(Cross-Validation)

这需要from sklearn import metrics ,通过在cross_val_score 指定参数来设定评测标准;
cv 指定为int 类型时,默认使用KFoldStratifiedKFold 进行数据集打乱,下面会对KFoldStratifiedKFold 进行介绍。

In [15]: from sklearn.model_selection import cross_val_score

In [16]: clf = svm.SVC(kernel='linear', C=1)

In [17]: scores = cross_val_score(clf, iris.data, iris.target, cv=5)

In [18]: scores
Out[18]: array([ 0.96666667, 1.    , 0.96666667, 0.96666667, 1.    ])

In [19]: scores.mean()
Out[19]: 0.98000000000000009

除使用默认交叉验证方式外,可以对交叉验证方式进行指定,如验证次数,训练集测试集划分比例等

In [20]: from sklearn.model_selection import ShuffleSplit

In [21]: n_samples = iris.data.shape[0]

In [22]: cv = ShuffleSplit(n_splits=3, test_size=.3, random_state=0)

In [23]: cross_val_score(clf, iris.data, iris.target, cv=cv)
Out[23]: array([ 0.97777778, 0.97777778, 1.    ])

cross_val_score 中同样可使用pipeline 进行流水线操作

In [24]: from sklearn import preprocessing

In [25]: from sklearn.pipeline import make_pipeline

In [26]: clf = make_pipeline(preprocessing.StandardScaler(), svm.SVC(C=1))

In [27]: cross_val_score(clf, iris.data, iris.target, cv=cv)
Out[27]: array([ 0.97777778, 0.93333333, 0.95555556])

3.cross_val_predict

cross_val_predictcross_val_score 很相像,不过不同于返回的是评测效果,cross_val_predict 返回的是estimator 的分类结果(或回归值),这个对于后期模型的改善很重要,可以通过该预测输出对比实际目标值,准确定位到预测出错的地方,为我们参数优化及问题排查十分的重要。

In [28]: from sklearn.model_selection import cross_val_predict

In [29]: from sklearn import metrics

In [30]: predicted = cross_val_predict(clf, iris.data, iris.target, cv=10)

In [31]: predicted
Out[31]: 
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
    1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1,
    1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2,
    2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2,
    2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])

In [32]: metrics.accuracy_score(iris.target, predicted)
Out[32]: 0.96666666666666667

4.KFold

K折交叉验证,这是将数据集分成K份的官方给定方案,所谓K折就是将数据集通过K次分割,使得所有数据既在训练集出现过,又在测试集出现过,当然,每次分割中不会有重叠。相当于无放回抽样。

In [33]: from sklearn.model_selection import KFold

In [34]: X = ['a','b','c','d']

In [35]: kf = KFold(n_splits=2)

In [36]: for train, test in kf.split(X):
  ...:   print train, test
  ...:   print np.array(X)[train], np.array(X)[test]
  ...:   print '\n'
  ...:   
[2 3] [0 1]
['c' 'd'] ['a' 'b']


[0 1] [2 3]
['a' 'b'] ['c' 'd']

5.LeaveOneOut

LeaveOneOut 其实就是KFold 的一个特例,因为使用次数比较多,因此独立的定义出来,完全可以通过KFold 实现。

In [37]: from sklearn.model_selection import LeaveOneOut

In [38]: X = [1,2,3,4]

In [39]: loo = LeaveOneOut()

In [41]: for train, test in loo.split(X):
  ...:   print train, test
  ...:   
[1 2 3] [0]
[0 2 3] [1]
[0 1 3] [2]
[0 1 2] [3]


#使用KFold实现LeaveOneOtut
In [42]: kf = KFold(n_splits=len(X))

In [43]: for train, test in kf.split(X):
  ...:   print train, test
  ...:   
[1 2 3] [0]
[0 2 3] [1]
[0 1 3] [2]
[0 1 2] [3]

6.LeavePOut

这个也是KFold 的一个特例,用KFold 实现起来稍麻烦些,跟LeaveOneOut 也很像。

In [44]: from sklearn.model_selection import LeavePOut

In [45]: X = np.ones(4)

In [46]: lpo = LeavePOut(p=2)

In [47]: for train, test in lpo.split(X):
  ...:   print train, test
  ...:   
[2 3] [0 1]
[1 3] [0 2]
[1 2] [0 3]
[0 3] [1 2]
[0 2] [1 3]
[0 1] [2 3]

7.ShuffleSplit

ShuffleSplit 咋一看用法跟LeavePOut 很像,其实两者完全不一样,LeavePOut 是使得数据集经过数次分割后,所有的测试集出现的元素的集合即是完整的数据集,即无放回的抽样,而ShuffleSplit 则是有放回的抽样,只能说经过一个足够大的抽样次数后,保证测试集出现了完成的数据集的倍数。

In [48]: from sklearn.model_selection import ShuffleSplit

In [49]: X = np.arange(5)

In [50]: ss = ShuffleSplit(n_splits=3, test_size=.25, random_state=0)

In [51]: for train_index, test_index in ss.split(X):
  ...:   print train_index, test_index
  ...:   
[1 3 4] [2 0]
[1 4 3] [0 2]
[4 0 2] [1 3]

8.StratifiedKFold

这个就比较好玩了,通过指定分组,对测试集进行无放回抽样。

In [52]: from sklearn.model_selection import StratifiedKFold

In [53]: X = np.ones(10)

In [54]: y = [0,0,0,0,1,1,1,1,1,1]

In [55]: skf = StratifiedKFold(n_splits=3)

In [56]: for train, test in skf.split(X,y):
  ...:   print train, test
  ...:   
[2 3 6 7 8 9] [0 1 4 5]
[0 1 3 4 5 8 9] [2 6 7]
[0 1 2 4 5 6 7] [3 8 9]

9.GroupKFold

这个跟StratifiedKFold 比较像,不过测试集是按照一定分组进行打乱的,即先分堆,然后把这些堆打乱,每个堆里的顺序还是固定不变的。

In [57]: from sklearn.model_selection import GroupKFold

In [58]: X = [.1, .2, 2.2, 2.4, 2.3, 4.55, 5.8, 8.8, 9, 10]

In [59]: y = ['a','b','b','b','c','c','c','d','d','d']

In [60]: groups = [1,1,1,2,2,2,3,3,3,3]

In [61]: gkf = GroupKFold(n_splits=3)

In [62]: for train, test in gkf.split(X,y,groups=groups):
  ...:   print train, test
  ...:   
[0 1 2 3 4 5] [6 7 8 9]
[0 1 2 6 7 8 9] [3 4 5]
[3 4 5 6 7 8 9] [0 1 2]

10.LeaveOneGroupOut

这个是在GroupKFold 上的基础上混乱度又减小了,按照给定的分组方式将测试集分割下来。

In [63]: from sklearn.model_selection import LeaveOneGroupOut

In [64]: X = [1, 5, 10, 50, 60, 70, 80]

In [65]: y = [0, 1, 1, 2, 2, 2, 2]

In [66]: groups = [1, 1, 2, 2, 3, 3, 3]

In [67]: logo = LeaveOneGroupOut()

In [68]: for train, test in logo.split(X, y, groups=groups):
  ...:   print train, test
  ...:   
[2 3 4 5 6] [0 1]
[0 1 4 5 6] [2 3]
[0 1 2 3] [4 5 6]

11.LeavePGroupsOut

这个没啥可说的,跟上面那个一样,只是一个是单组,一个是多组

from sklearn.model_selection import LeavePGroupsOut

X = np.arange(6)

y = [1, 1, 1, 2, 2, 2]

groups = [1, 1, 2, 2, 3, 3]

lpgo = LeavePGroupsOut(n_groups=2)

for train, test in lpgo.split(X, y, groups=groups):
  print train, test
  
[4 5] [0 1 2 3]
[2 3] [0 1 4 5]
[0 1] [2 3 4 5]

12.GroupShuffleSplit

这个是有放回抽样

In [75]: from sklearn.model_selection import GroupShuffleSplit

In [76]: X = [.1, .2, 2.2, 2.4, 2.3, 4.55, 5.8, .001]

In [77]: y = ['a', 'b','b', 'b', 'c','c', 'c', 'a']

In [78]: groups = [1,1,2,2,3,3,4,4]

In [79]: gss = GroupShuffleSplit(n_splits=4, test_size=.5, random_state=0)

In [80]: for train, test in gss.split(X, y, groups=groups):
  ...:   print train, test
  ...:   
[0 1 2 3] [4 5 6 7]
[2 3 6 7] [0 1 4 5]
[2 3 4 5] [0 1 6 7]
[4 5 6 7] [0 1 2 3]

13.TimeSeriesSplit

针对时间序列的处理,防止未来数据的使用,分割时是将数据进行从前到后切割(这个说法其实不太恰当,因为切割是延续性的。。)

In [81]: from sklearn.model_selection import TimeSeriesSplit

In [82]: X = np.array([[1,2],[3,4],[1,2],[3,4],[1,2],[3,4]])

In [83]: tscv = TimeSeriesSplit(n_splits=3)

In [84]: for train, test in tscv.split(X):
  ...:   print train, test
  ...:   
[0 1 2] [3]
[0 1 2 3] [4]
[0 1 2 3 4] [5]

这个repo 用来记录一些python技巧、书籍、学习链接等,欢迎star github地址

Python 相关文章推荐
python 不关闭控制台的实现方法
Oct 23 Python
python 字符串split的用法分享
Mar 23 Python
Django开发中的日志输出的方法
Jul 02 Python
python绘制立方体的方法
Jul 02 Python
python生成九宫格图片
Nov 19 Python
python添加菜单图文讲解
Jun 04 Python
如何基于Python获取图片的物理尺寸
Nov 25 Python
python 用 xlwings 库 生成图表的操作方法
Dec 22 Python
pytorch程序异常后删除占用的显存操作
Jan 13 Python
Python AutoCAD 系统设置的实现方法
Apr 01 Python
基于Python3读写INI配置文件过程解析
Jul 23 Python
利用python制作拼图小游戏的全过程
Dec 04 Python
Python爬虫分析微博热搜关键词的实现代码
Feb 22 #Python
anaconda升级sklearn版本的实现方法
Feb 22 #Python
详解Python 中的 defaultdict 数据类型
Feb 22 #Python
python快速安装OpenCV的步骤记录
Feb 22 #Python
Python中生成ndarray实例讲解
Feb 22 #Python
python爬虫利用代理池更换IP的方法步骤
Feb 21 #Python
Python用requests库爬取返回为空的解决办法
Feb 21 #Python
You might like
全国FM电台频率大全 - 22 重庆市
2020/03/11 无线电
深入PHP获取随机数字和字母的方法详解
2013/06/06 PHP
PHP7新功能总结
2019/04/14 PHP
Laravel 5.1 框架Blade模板引擎用法实例分析
2020/01/04 PHP
做网页的一些技巧(续)
2007/02/01 Javascript
img的onload的另类用法
2008/01/10 Javascript
jQuery $.each的用法说明
2010/03/22 Javascript
php上传图片并给图片打上透明水印的代码
2010/06/07 Javascript
浅谈tudou土豆网首页图片延迟加载的效果
2010/06/23 Javascript
javascript使用appendChild追加节点实例
2015/01/12 Javascript
nodejs调用cmd命令实现复制目录
2015/05/04 NodeJs
JavaScript中解决多浏览器兼容性23个问题的快速解决方法
2016/05/19 Javascript
Bootstrap学习笔记之js组件(4)
2016/06/12 Javascript
Vue.js使用v-show和v-if的注意事项
2016/12/13 Javascript
Angular实现购物车计算示例代码
2017/02/21 Javascript
解决vue keep-alive 数据更新的问题
2018/09/21 Javascript
深入分析element ScrollBar滚动组件源码
2019/01/22 Javascript
详解jquery和vue对比
2019/04/16 jQuery
解决Mint-ui 框架Popup和Datetime Picker组件滚动穿透的问题
2020/11/04 Javascript
Python 深入理解yield
2008/09/06 Python
python利用有道翻译实现"语言翻译器"的功能实例
2017/11/14 Python
详解Django的CSRF认证实现
2018/10/09 Python
利用python控制Autocad:pyautocad方式
2020/06/01 Python
Python join()函数原理及使用方法
2020/11/14 Python
欧洲高端品牌直销店:Fashionesta
2016/08/31 全球购物
应届生文秘专业个人自荐信格式
2013/09/21 职场文书
活动总结报告范文
2014/05/04 职场文书
教师廉洁自律承诺书
2014/05/26 职场文书
普通党员自我剖析材料
2014/10/07 职场文书
大学生档案自我鉴定(2篇)
2014/10/14 职场文书
2014年单位法制宣传日活动总结
2014/11/01 职场文书
广告公司文案策划岗位职责
2015/04/14 职场文书
护理专业毕业自我鉴定
2019/08/12 职场文书
英镑符号 £
2022/02/17 杂记
Python通过loop.run_in_executor执行同步代码 同步变为异步
2022/04/11 Python
Python开发五子棋小游戏
2022/04/28 Python